{-# OPTIONS --cubical-compatible --safe #-}
open import Tactic.RingSolver.Core.Polynomial.Parameters
module Tactic.RingSolver.Core.Polynomial.Homomorphism.Negation
{r₁ r₂ r₃ r₄}
(homo : Homomorphism r₁ r₂ r₃ r₄)
where
open import Data.Vec.Base using (Vec)
open import Data.Product.Base using (_,_)
open import Data.Nat using (_<′_)
open import Data.Nat.Induction
open import Function.Base using (_⟨_⟩_; flip)
open Homomorphism homo
open import Tactic.RingSolver.Core.Polynomial.Homomorphism.Lemmas homo
open import Tactic.RingSolver.Core.Polynomial.Reasoning to
open import Tactic.RingSolver.Core.Polynomial.Base from
open import Tactic.RingSolver.Core.Polynomial.Semantics homo
⊟-step-hom : ∀ {n} (a : Acc _<′_ n) → (xs : Poly n) → ∀ ρ → ⟦ ⊟-step a xs ⟧ ρ ≈ - (⟦ xs ⟧ ρ)
⊟-step-hom (acc _ ) (Κ x ⊐ i≤n) ρ = -‿homo x
⊟-step-hom (acc wf) (⅀ xs ⊐ i≤n) ρ′ =
let (ρ , ρs) = drop-1 i≤n ρ′
neg-zero =
begin
0#
≈⟨ sym (zeroʳ _) ⟩
- 0# * 0#
≈⟨ -‿*-distribˡ 0# 0# ⟩
- (0# * 0#)
≈⟨ -‿cong (zeroˡ 0#) ⟩
- 0#
∎
in
begin
⟦ poly-map (⊟-step (wf i≤n)) xs ⊐↓ i≤n ⟧ ρ′
≈⟨ ⊐↓-hom (poly-map (⊟-step (wf i≤n)) xs) i≤n ρ′ ⟩
⅀?⟦ poly-map (⊟-step (wf i≤n)) xs ⟧ (ρ , ρs)
≈⟨ poly-mapR ρ ρs (⊟-step (wf i≤n)) -_ (-‿cong) (λ x y → *-comm x (- y) ⟨ trans ⟩ -‿*-distribˡ y x ⟨ trans ⟩ -‿cong (*-comm _ _)) (λ x y → sym (-‿+-comm x y)) (flip (⊟-step-hom (wf i≤n)) ρs) (sym neg-zero ) xs ⟩
- ⅀⟦ xs ⟧ (ρ , ρs)
∎
⊟-hom : ∀ {n}
→ (xs : Poly n)
→ (Ρ : Vec Carrier n)
→ ⟦ ⊟ xs ⟧ Ρ ≈ - ⟦ xs ⟧ Ρ
⊟-hom = ⊟-step-hom (<′-wellFounded _)