l ocAL CONTEXTUAL
TYPE INFERENCE

Xu Xue, Chen Cui, Shengyi Jiang, Bruno C. d. S. Oliveira

(The University of Hong Kong)

Local Algorithms Contextual Typing

l ocAL CONTEXTUAL
TYPE INFERENCE

Local Type Inference

Local Type Inference

e Adopted by Java, Scala, C#, TypeScript etc.

e Considered as partial type inference methods;

Local Type Inference

BENJAMIN C. PIERCE
University of Pennsylvania

and
DAVID N. TURNER

An Teallach, Ltd.

We study two partial type inference methods for a language combining s
tive polymorphism. Both methods are local in the sense that missing a
using only information from adjacent nodes in the syntax tree, without

such as unification variables. One method infers type arguments in polym
a local constraint solver. The other infers annotations on bound variable
by propagating type constraints downward from enclosing application

design choices by a statistical analysis of the uses of type inference in &
ML code.

e Scales to advanced features, including implicit impredicative instantfiations;

e Consists of two key ideas:
e Bidirectional Typing

e Local synthesis of fype arguments

Local Type Inference: Specifications and Limitations

p- Functions are default uncurried, whose types merged with polymorphic types;
po Four application rules: instantiation logic is monolithic;
e Locality is limited to an argument list of an uncurried application;
e cannot be propagated to, e.qg., other argument lists;

p o it requires all arguments in a list to be inferable;

[+ f=Va. B> G2Tre=D
OTrrf=VaB—C @ >0 T+D<:[A/a]|B
l'+e< [A/a]|B pvﬁ.(r - D <: [F/a]B implies T + [A/@]C <: [F/a]C)
'+ f[A](e) = [A/a]C '+ f(e) = [A/a]C

S-App

S-App-InfSpec

e Practical languages use instantiation information immediately, left to right

You're designing a bidirectional type system

For function application rules

Inferring the type of argument,

Inferring the type of function, ?
‘ "partial-inferring" the type of function

checking against arguments

I'teg=>A—>B ['Fe, & A I'te;?”A — B ['Fe, => A
APP APP
['Feea =B I'ejep, = B
e Default choice e No suitable modes for functions
o Useful for higher-order application e Useful for polymorphic function instantiation
e Arguments can be unannotated lambdas e Use argument information to assist function inference

You're designing a bidirectional type system

For function application rules

Inferring the type of argument,
"partial-inferring" the type of function

Inferring the type of function,
checking the type of arguments

o Backtracking

Contextual Typing pxue & oiiveira 2024]

@ find a way to specify the "partial-inference"

¥~ Contextual Type Assignment Systems (CTAS):
- V’ -
/Q\ Don't use modes, use masks*.

Atomic Masks a::
Masks

alam

3
]

', e: A

* "Masks" Is a re-interpretation of "counters” in the original work "Contextual Typing"

Contextual Typing pxue & oiiveira 2024]

@ find a way to specify the "partial-inference"

(). Contextual Type Assignment Systems (CTAS):
/Q\ Don't use modes, use masks.

Masks characterize what information we know from the context

No contextual information: [+H e : A

Full contextual information:I' O e : A

Partial contextual information: I [e : A > B

Contextual Typing pxue & oiiveira 2024]

@ find a way to specify the "partial-inference"

(). Contextual Type Assignment Systems (CTAS):
/Q\ Don't use modes, use masks.

Application rules as mask collectors

Fl—(am) et:A—>B T'F,e: A

I'F,, e1e: B

Contextual Typing pxue & oiiveira 2024]

@ find a way to avoid backtracking to have both app rules

—@- In algorithm, don't decide inference/checking of arguments in
¥ application, decide it when it's "consumed".

Contexts (2) are infroduced to store deferred type-checking tasks of arguments

['Fley |2 —=>e > A—>B

['F2 > e e =B

10

Contextual Typing pxue & oiiveira 2024]

Two systems (specification & algorithm)
are proved to be equivalent.

L ocal Contextual Type Inference

e |t's arefinement of LTI using contextual typing ideas;

e |t givesrise to a modular rule design;

e |, just like LTI, advocates matching instead of ;
o It provides clearer specification, making it closer to canonical systems (System F);
e |t removes practical restrictions of LTI and offers better locality;

e |t's rigorously studied (all are mechanized) @A@d@ WROCQ

e We hope it stands as a principled and practical foundation for inference

12

Example (hypothetical): id 1 [FC Tr[C/a]JA<B

I'FVa. A <B
Var VL
'rid:Va. a — « I'FVa.a = a < Int — Int .
Sub Lit
' id: Int = Int 'F1:Int

A
' id 1: Int PF

Unrestricted VL is undecidable, people often compromise to a decidable fragment

Example (w/masks): id 1

. Var VL
'rid:Va.a = « I'FVa. o = a < Int — Int .
. Sub Lit
' id: Int = Int I'F1:Int
. App
I'Fid 1:Int
Var VL
[Fgid:Va.a — « [Fom Y. 0 — a < Int — Int ,
Sub Lit
[trg 1d : Int — Int Crg 1:Int
. App
rl_.|d1:lnt

Key insight: Leverage masks tfo ensure the guess can be safely made.

14

Restrict VL rule with masks ['+C

't |[C/a]A < B

I'FVa. A<B

(a m)

'+ B ~ ['tam) [B/a]A<C— D

I'tam) Va. A<C — D

e Polymorphic types can only be instantiated to function types.

e Implicit polymorphism is application triggered only.

e Instantiability guarantees us that we are able to make the guess;

15

Instantiability: when you can make the guess

 VapB o a - (a — a)— B > B i
S /\::
| Int — () — Int —
f (AX. X) 2

o |Lefft-to-right fraversal;

e |nterleaved inference and checking of arguments

|6

Towards Algorithm: Matching Subtyping

e Matching variables: track solved instantiations;

B A7, TiA&@=BramA<"C—oD

't A v m) Va. A <" C — D

e Solution of matching variables cannot contain other matching variables

e Different to unification: a =3 - 3 is disallowed in matching.

e Invariant: matching variables can only appear on one side.

't f=Va.B—C FkE:B/imP“ede
| >0 TrD<:[A/a]B
VF.(T + D <: [F/a]B impliesT + [A/a]C <: [F/a]C)
'+ f(e) = [A/a]C

17

Towards Algorithm: Input and Output Environments

Ti'AagrA<[el~34A.é&="C~ B

FT'TArFVa. A< |le|l~2X4A ~» B

1) unsolved matching variables O

2) learn more information from the inference of arguments

1 Abopen A THE=e=C FT'"AFrC< A4AN TIANFB<"IXA4A" ~» D
FT''"ArA—>B<t|e]l~24A" ~»C—>D

3) once information is enough, check arguments

T 1A Fegsed A [F[AJA= e = A TTAFrB<T"Y4A ~» D
T'ArA—-B<[e|l~>24A ~ [A]JA— D

Towards Algorithm: Input and Output Environments

'rm=id=Va.agd — «

Var

F'raroag — a <

1

~ B4 & =Int ~w Int — Int

'FVa.a— a<|1|~ H v Int = Int

I'

1

~ 0 = id = Int — Int

['-m=id 1

App

Sub

VL0

19

Recap: Local Contextual Type Inference

Implicit _ -~ complete

- ’(inserting annotations)

complete /\\ sound
System F

Matching Subtyping T' 1 A +,, A < B

complete sound

Algorithm T 1IAFA LT X4 A ~» B

Conclusion

e LCTI: offering a simple and modular specification of LTI
e Matching Subtyping: specify the use of matching in constraint solving

e Contextual System F: soundness & completeness across three systems

e Everything at https://qgithub.com/juniorxxue/LCT|
e Mechanized proofs, Haskell prototype and extended paper

21

https://github.com/juniorxxue/LCTI

