
Local Contextual

Type Inference

Xu Xue, Chen Cui, Shengyi Jiang, Bruno C. d. S. Oliveira

(The University of Hong Kong)

Local Contextual

Type Inference

Contextual TypingLocal Algorithms

Local Type Inference

Local Type Inference

3

• Adopted by Java, Scala, C#, TypeScript etc.

• Considered as partial type inference methods;

• Scales to advanced features, including implicit impredicative instantiations;

• Consists of two key ideas:

• Bidirectional Typing

• Local synthesis of type arguments

Local Type Inference: Specifications and Limitations

4

• Functions are default uncurried, whose types merged with polymorphic types;

• Four application rules: instantiation logic is monolithic;

• Locality is limited to an argument list of an uncurried application;

• cannot be propagated to, e.g., other argument lists;

• it requires all arguments in a list to be inferable;

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Local Contextual Type Inference 111:5

2.2 Local Type Inference Specification and its Limitations
Local type inference has an interesting approach to instantiation. However, the speci!cation
proposed by Pierce and Turner is complex, and has important restrictions compared to practical
implementations. A !rst complication is that they depart from standard System F syntax. Functions
are, by default, uncurried: type arguments (if present) and function arguments are all provided at
once, and polymorphic types are merged with function types having the syntactic form →𝐿 . 𝑀 ↑ 𝑁.

Specifying applications and instantiation. Instantiation is monolithically modelled as part of the
application rules. There are four application rules in total. Two of them are checking rules, and two
others are inference rules. We show the inference rules for explicit and implicit instantiation next:

ω ↓ 𝑂 ↔ →𝐿 . 𝑁 ↑ 𝑃
ω ↓ 𝑄 ↗ [𝑀/𝐿]𝑁

ω ↓ 𝑂 [𝑀] (𝑄) ↔ [𝑀/𝐿]𝑃
S-App

ω ↓ 𝑂 ↔ →𝐿 . 𝑁 ↑ 𝑃 ω ↓ 𝑄 ↔ 𝑅
|𝐿 | > 0 ω ↓ 𝑅 <: [𝑀/𝐿]𝑁

→𝑆 .(ω ↓ 𝑅 <: [𝑆/𝐿]𝑁 implies ω ↓ [𝑀/𝐿]𝑃 <: [𝑆/𝐿]𝑃)
ω ↓ 𝑂 (𝑄) ↔ [𝑀/𝐿]𝑃

S-App-InfSpec

The checking rules are similar and largely duplicate the logic of the inference rules. The rule for
explicit instantiation (rule S-App) can be viewed as a generalization of the standard bidirectional
typing rule presented earlier, except that it deals with uncurried applications and their explicit
instantiations. The number of quanti!ers 𝐿 can be zero, and in that case it falls back to the non-
polymorphic bidirectional function application. Rule S-App-InfSpec is used for function applications
with implicit instantiation, where type arguments are not required. Unlike the !rst rule, it requires
that the arguments are always inferable (ω ↓ 𝑄 ↔ 𝑅). This rule !rst infers the types for both the
function and its arguments, and then uses subtyping to compare the inferred type of the arguments
with the input type of the function, but substituted with the guessed type arguments. There are
a few important conditions in this rule. Firstly, the rule ensures that it is used in a polymorphic
context (|𝐿 | > 0). The last condition enforces that the guessed type is the most precise type. Finally
the condition ω ↓ 𝑅 <: [𝑀/𝐿]𝑁 speci!es how to !nd solutions for instantiation using subtyping.
Notably, the type 𝑁 has free type variables, that must be replaced with guessed instantiations (𝑀),
but no instantiations are needed for the subtype 𝑅 . This suggests that matching is su"cient to
implement the solving process. We will come back to the topic of matching later in Sec. 4.

Uncurried applications and locality. In Pierce and Turner’s formulation of LTI uncurried applica-
tions play an important role, since they de!ne the notion of locality in the approach. The distinction
between local and global type inference is that in local type inference only information from
adjacent nodes in the abstract syntax is used to solve instantiations. In Pierce and Turner’s LTI this
means that all instantiations must be found from looking only at the arguments of an uncurried
function. Consider a constant function applied to two arguments:

const : →𝐿 𝑇 . 𝐿 ↑ 𝑇 ↑ 𝐿 ↓ const true 1 ↔ Bool
Here we have two type arguments instantiated with Bool and Int for the application const true 1.
In an uncurried formulation of this application, which !ts with Pierce and Turner’s approach, rule
S-App-InfSpec can be applied (const(true, 1)). This rule would guess the instantiations and infer
the type Bool. Their rule ensures that, after applying the arguments, all instantiations for type
variables (𝐿 and 𝑇 in this case) in the uncurried application are guessed.

Second class treatment for curried functions. Curried functions can still be encoded, since the
syntax does allow for nested uncurried abstractions. Here we use the syntax 𝑈 𝐿 𝑉 : 𝑀. 𝑄 to denote an
uncurried function with type arguments 𝐿 and arguments 𝑉 : 𝑀. In Pierce and Turner’s LTI we can
write a curried variant of the const function using, for example: const2 = 𝑈𝐿 (𝑉 : 𝐿). 𝑈𝑇 (𝑊 : 𝑇). 𝑉 .

• Practical languages use instantiation information immediately, left to right

You're designing a bidirectional type system

5

For function application rules

Inferring the type of function,
checking against arguments

Inferring the type of argument,
"partial-inferring" the type of function

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

2 Anon.

𝐿𝐿
0 = 𝑀 ω FV(𝐿) (1)

𝐿𝐿
→ = true (2)

𝑀𝐿
→↑ = true (3)

(𝐿 ↓ 𝑁)𝐿(𝑀 𝑁) = 𝑀 ↔ FV(𝐿) (4)

(𝐿 ↓ 𝑁)𝐿(𝑂 𝑁) = 𝑀 ω FV(𝐿) ↗ 𝑁𝐿
𝑁 (5)

(↘𝑂 . 𝐿)𝐿(𝑂 𝑁) = 𝐿𝐿
(𝑂 𝑁) (6)

(7)

4 Algo. Typing
ω ≃ ε ⇐ 𝑃 ⇐ 𝐿 (Under ω and ε, term 𝑃 infers the type 𝐿.)

ω ≃ ⊋ ⇐ 𝑄 ⇐ Int
AT!L"#

𝑅 : 𝐿 ↔ ω

ω ≃ ⊋ ⇐ 𝑅 ⇐ 𝐿
AT!V$%

ω ≃ 𝐿 ⇐ 𝑃 ⇐ 𝑁

ω ≃ ⊋ ⇐ 𝑃 : 𝐿 ⇐ 𝐿
AT!A&&

ω, 𝑅 : 𝐿 ≃ 𝑁 ⇐ 𝑃 ⇐ 𝑆

ω ≃ 𝐿 ↓ 𝑁 ⇐ 𝑇𝑅 . 𝑃 ⇐ 𝐿 ↓ 𝑆
AT!L$’1

ω ≃ ⊋ ⇐ 𝑃2 ⇐ 𝐿 ω, 𝑅 : 𝐿 ≃ ε ⇐ 𝑃 ⇐ 𝑁

ω ≃ 𝑃2 ! ε ⇐ 𝑇𝑅 . 𝑃 ⇐ 𝐿 ↓ 𝑁
AT!L$’2

AT!TL$’1
ω,𝑀 ≃ ⊋ ⇐ 𝑃 ⇐ 𝐿

ω ≃ ⊋ ⇐ ϑ𝑀 . 𝑃 ⇐ ↘𝑀 . 𝐿

AT!TL$’2
ω,𝑀 ≃ 𝑁 ⇐ 𝑃 ⇐ 𝐿

ω ≃ ↘𝑀 . 𝑁 ⇐ ϑ𝑀 . 𝑃 ⇐ ↘𝑀 . 𝐿

AT!A((
ω ≃ 𝑃2 ! ε ⇐ 𝑃1 ⇐ 𝐿 ↓ 𝑁

ω ≃ ε ⇐ 𝑃1 𝑃2 ⇐ 𝑁

ω ≃ ⊋ ⇐ 𝑈 ⇐ 𝐿 ε ε ⊋ ω ⫅̸ · ≃ 𝐿 ⇒+ ε ⇑ · ⫆̸ 𝑁

ω ≃ ε ⇐ 𝑈 ⇐ 𝑁
AT!S)*

ω ≃ ⊋ ⇐ 𝑃 ⇐ ↘𝑀 . 𝑁 ω ⫅̸ · ≃ [𝐿/𝑀] 𝑁 ⇒+ ε ⇑ · ⫆̸ 𝑆

ω ≃ ε ⇐ 𝑃 @𝐿 ⇐ 𝑆
AT!TA((

5 Algo. Subtyping

ω ⫅̸ ϖ ≃ 𝐿 ⇒+ ε ⇑ ϱ ⫆̸ 𝑁 (Under ω and ϖ, type 𝐿 is the subtype of ε and outputs ϱ and 𝑁.)

ω ⫅̸ ϖ ≃closed 𝐿
ω ⫅̸ ϖ ≃ 𝐿 ⇒+ ⊋ ⇑ ϖ ⫆̸ ϖ(𝐿)

AS!E’(#+
ω ⫅̸ ϖ ≃ 𝐿 ⇒+ 𝑁 ⇑ ϱ

ω ⫅̸ ϖ ≃ 𝐿 ⇒+ 𝑁 ⇑ ϱ ⫆̸ 𝑁
AS!T+(,

ω ⫅̸ ϖ ≃closed 𝐿 ω ≃ ϖ(𝐿) ⇐ 𝑃 ⇐ 𝐿⇓ ω ⫅̸ ϖ ≃ 𝑁 ⇒+ ε ⇑ ϱ ⫆̸ 𝑉

ω ⫅̸ ϖ ≃ 𝐿 ↓ 𝑁 ⇒+ 𝑃 ! ε ⇑ ϱ ⫆̸ ϖ(𝐿) ↓ 𝑉
AS!T%’!C

ω ⫅̸ ϖ ≃open 𝐿 ω ≃ ⊋ ⇐ 𝑃 ⇐ 𝑆 ω ⫅̸ ϖ ≃ 𝑆 ⇒⇔ 𝐿 ⇑ ς ω ⫅̸ ς ≃ 𝑁 ⇒+ ε ⇑ ϱ ⫆̸ 𝑉

ω ⫅̸ ϖ ≃ 𝐿 ↓ 𝑁 ⇒+ 𝑃 ! ε ⇑ ϱ ⫆̸ 𝑆 ↓ 𝑉
AS!T%’!O

ω ⫅̸ ϖ,𝑀 ≃ 𝐿 ⇒+ 𝑃 ! ε ⇑ ϱ,𝑀
?=𝑆 ⫆̸ 𝑁

ω ⫅̸ ϖ ≃ ↘𝑀 . 𝐿 ⇒+ 𝑃 ! ε ⇑ ϱ ⫆̸ 𝑁
AS!↘L

ω ⫅̸ ϖ[𝑀 = 𝐿] ≃ 𝐿 ⇒+ ε ⇑ ϖ[𝑀 = 𝐿] ⫆̸ 𝑁

ω ⫅̸ ϖ[𝑀 = 𝐿] ≃ 𝑀 ⇒+ ε ⇑ ϖ[𝑀 = 𝐿] ⫆̸ 𝑁
AS!SV$%

ω ≃ 𝑃 ! ε =⇐ 𝐿

ω ⫅̸ ϖ[𝑀] ≃ 𝑀 ⇒+ 𝑃 ! ε ⇑ ϖ[𝑀 = 𝐿] ⫆̸ 𝐿
AS!I&-.

ω ≃ 𝑃1 ⇐ 𝐿 ↓ 𝑁 ω ≃ 𝑃2 ↖ 𝐿

ω ≃ 𝑃1 𝑃2 ⇐ 𝑁
A((

• Default choice

• Useful for higher-order application

• Arguments can be unannotated lambdas

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

Contextual System F (No T Counters) 3

5 Algo. Subtyping

ω ⊋ ε → 𝐿 ↑+ ϑ ↓ ϖ ⫅̸ 𝑀 (Under ω and ε, type 𝐿 is the subtype of ϑ and outputs ϖ and 𝑀.)

ω ⊋ ε →closed 𝐿
ω ⊋ ε → 𝐿 ↑+ ⫆̸ ↓ ε ⫅̸ ε(𝐿)

AS!E"#$%
ω ⊋ ε → 𝐿 ↑+ 𝑀 ↓ ϖ

ω ⊋ ε → 𝐿 ↑+ 𝑀 ↓ ϖ ⫅̸ 𝑀
AS!T%#&

ω ⊋ ε →closed 𝐿 ω → ε(𝐿) ↔ 𝑁 ↔ 𝐿↗ ω ⊋ ε → 𝑀 ↑+ ϑ ↓ ϖ ⫅̸ 𝑂

ω ⊋ ε → 𝐿 ↘ 𝑀 ↑+ 𝑁 ! ϑ ↓ ϖ ⫅̸ ε(𝐿) ↘ 𝑂
AS!T’"!C

ω ⊋ ε →open 𝐿 ω → ⫆̸ ↔ 𝑁 ↔ 𝑃 ω ⊋ ε → 𝑃 ↑≃ 𝐿 ↓ ϱ ω ⊋ ϱ → 𝑀 ↑+ ϑ ↓ ϖ ⫅̸ 𝑂

ω ⊋ ε → 𝐿 ↘ 𝑀 ↑+ 𝑁 ! ϑ ↓ ϖ ⫅̸ 𝑃 ↘ 𝑂
AS!T’"!O

ω ⊋ ε,𝑄 → 𝐿 ↑+ 𝑁 ! ϑ ↓ ϖ,𝑄
?=𝑃 ⫅̸ 𝑀

ω ⊋ ε → ⇐𝑄 . 𝐿 ↑+ 𝑁 ! ϑ ↓ ϖ ⫅̸ 𝑀
AS!⇐L

ω ⊋ ε[𝑄 = 𝐿] → 𝐿 ↑+ ϑ ↓ ε[𝑄 = 𝐿] ⫅̸ 𝑀

ω ⊋ ε[𝑄 = 𝐿] → 𝑄 ↑+ ϑ ↓ ε[𝑄 = 𝐿] ⫅̸ 𝑀
AS!SV(’

ω → 𝑁 ! ϑ =↔ 𝐿

ω ⊋ ε[𝑄] → 𝑄 ↑+ 𝑁 ! ϑ ↓ ε[𝑄 = 𝐿] ⫅̸ 𝐿
AS!I)*+

ω → 𝑁1 ↔ 𝐿 ↘ 𝑀 ω → 𝑁2 ⇒ 𝐿

ω → 𝑁1 𝑁2 ↔ 𝑀
A##

ω → 𝑁1 ? 𝐿 ↘ 𝑀 ω → 𝑁2 ↔ 𝐿

ω → 𝑁1 𝑁2 ↔ 𝑀
A##

Types 𝐿,𝑀,𝑃,𝑂 ::= Int | 𝐿 ↘ 𝑀 | 𝑄 | ⇐𝑄 . 𝐿
Expressions 𝑁 ::= 𝑅 | 𝑆 | 𝑇𝑆 : 𝐿. 𝑁 | 𝑁1 𝑁2 | ς𝑄 . 𝑁 | 𝑁 @𝐿

Environments ω ::= · | ω, 𝑆 : 𝐿 | ω,𝑄

• No suitable modes for functions

• Useful for polymorphic function instantiation

• Use argument information to assist function inference

You're designing a bidirectional type system

6

For function application rules
BOTH!

Backtracking

Inferring the type of function,
checking the type of arguments

Inferring the type of argument,
"partial-inferring" the type of function

Contextual Typing [Xue & Oliveira 2024]

7

find a way to specify the "partial-inference"

Contextual Type Assignment Systems (CTAS):
Don't use modes, use masks*.

11:8 Xu Xue, Chen Cui, Shengyi Jiang, and Bruno C. d. S. Oliveira

ω →𝐿 𝐿 : 𝑀 (Under environment ω, expression 𝐿 has type 𝑀 with𝑁 contextual information.)

ω →↭ 𝑂 : Int
DLit

𝑃 : 𝑀 ↑ ω

ω →↭ 𝑃 : 𝑀
DVar

ω →↫ 𝐿 : 𝑀
ω →↭ (𝐿 : 𝑀) : 𝑀

DAnn
ω, 𝑃 : 𝑀 →𝐿↓ 𝐿 : 𝑄
ω →𝐿 𝑅𝑃 . 𝐿 : 𝑀 ↔ 𝑄

DLam

ω →(𝑀 𝐿) 𝐿1 : 𝑀 ↔ 𝑄 ω →𝑀 𝐿2 : 𝑀
ω →𝐿 𝐿1 𝐿2 : 𝑄

DApp
ω →↭ 𝐿 : 𝑀 ω →𝐿 𝑀 = 𝑄

ω →𝐿 𝐿 : 𝑄
DSub

Fig. 1. Declarative typing rules for STLC.

In general masks where all information is available (such as ↫ or ↫↫) or no information is available
(such as ↭ or ↭↭) can be modeled, respectively, in a traditional bidirectional type system with the
inference and checking modes. In contrast, mixed masks, such as ↫↭ or ↭↫, where only some type
information is available, have no direct correspondence to bidirectional typing. We present the
CTAS for STLC in Fig. 1 to illustrate the key ideas. The syntax of contextual STLC is:

Types 𝑀,𝑄,𝑆,𝑇 ::= Int | 𝑀 ↔ 𝑄
Typing Environments ω ::= · | ω, 𝑃 : 𝑀
Expressions 𝐿 ::= 𝑂 | 𝑃 | 𝑅𝑃 . 𝐿 | 𝐿1 𝐿2 | 𝐿 : 𝑀
Atomic Masks 𝑈 ::= ↫ | ↭
Masks 𝑁 ::= 𝑈 | 𝑈 𝑁

To help understand the typing rules, we colorize the types based on their masks. Red types
correspond to ↭ masks and blue types to ↫ masks. In other words, red types are unavailable in the
context and are inferred by the term itself, while blue types are known from the context. We wish
to remark that colors play no role in the theory but are used only for readability. Rules DLit, DVar,
and DAnn apply to terms whose types can be inferred directly from their syntax, and the mask is ↭
since no contextual information is required. Rule DLam states that a lambda term has type 𝑀 ↔ 𝑄
if its mask can be decreased (↫↓ = ↫ and (↫𝑁)↓ = 𝑁), which means that 𝑀 is known from the
context. Rule DSub clears the context if the term 𝐿 is inferable and the mask𝑁 matches type 𝑀.
Besides changing the notion of counters to masks, there is one minor adaptation from the original
type system [Xue and Oliveira 2024] to align with the presentation in Sec. 3. We use the notation
ω →𝐿 𝑀 = 𝑄 in the DSub rule. For STLC, subsumption is trivial, and it just amounts to syntactic
equality and checking whether the shape of types matches masks.

The application rule is the most interesting. First we know that the argument 𝐿2 is typeable with
some mask 𝑈, The function part 𝐿1 is then aware of the increased information by appending the
!ipped mask 𝑈 to𝑁 (↫ = ↭ and ↭ = ↫). The standard bidirectional rule for applications, using the
inferred type of the function to check the arguments, will become a specialized instance of DApp
when 𝑈 is ↫ and𝑁 is ↭. In contrast, when 𝑈 is ↭ the type of the argument must be inferred, and this
information can be used in 𝐿1 as available contextual information. This enables the inference of
lambdas as applicands and the encoding of let-binders. For example, (𝑅x. 𝑅y. x + y) 1 2 is accepted:

DLit
ω →↭ 2 : Int

DLit
ω →↭ 1 : Int

· · · DLam
ω →↫↫↭ (𝑅x. 𝑅y. x + y) : Int ↔ Int ↔ Int

DApp
ω →↫↭ (𝑅x. 𝑅y. x + y) 1 : Int ↔ Int

DApp
ω →↭ (𝑅x. 𝑅y. x + y) 1 2 : Int

A naive implementation of DApp would rely on backtracking, since a choice between infer-
ence and checking would be needed for each argument. Instead, contextual typing provides a
non-backtracking syntax-directed algorithm that can be e"ciently implemented. We omit the
presentation of the algorithm here, and discuss it instead in Sec. 5.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 11. Publication date: January 2026.

11:8 Xu Xue, Chen Cui, Shengyi Jiang, and Bruno C. d. S. Oliveira

ω →𝐿 𝐿 : 𝑀 (Under environment ω, expression 𝐿 has type 𝑀 with𝑁 contextual information.)

ω →↭ 𝑂 : Int
DLit

𝑃 : 𝑀 ↑ ω

ω →↭ 𝑃 : 𝑀
DVar

ω →↫ 𝐿 : 𝑀
ω →↭ (𝐿 : 𝑀) : 𝑀

DAnn
ω, 𝑃 : 𝑀 →𝐿↓ 𝐿 : 𝑄
ω →𝐿 𝑅𝑃 . 𝐿 : 𝑀 ↔ 𝑄

DLam

ω →(𝑀 𝐿) 𝐿1 : 𝑀 ↔ 𝑄 ω →𝑀 𝐿2 : 𝑀
ω →𝐿 𝐿1 𝐿2 : 𝑄

DApp
ω →↭ 𝐿 : 𝑀 ω →𝐿 𝑀 = 𝑄

ω →𝐿 𝐿 : 𝑄
DSub

Fig. 1. Declarative typing rules for STLC.

In general masks where all information is available (such as ↫ or ↫↫) or no information is available
(such as ↭ or ↭↭) can be modeled, respectively, in a traditional bidirectional type system with the
inference and checking modes. In contrast, mixed masks, such as ↫↭ or ↭↫, where only some type
information is available, have no direct correspondence to bidirectional typing. We present the
CTAS for STLC in Fig. 1 to illustrate the key ideas. The syntax of contextual STLC is:

Types 𝑀,𝑄,𝑆,𝑇 ::= Int | 𝑀 ↔ 𝑄
Typing Environments ω ::= · | ω, 𝑃 : 𝑀
Expressions 𝐿 ::= 𝑂 | 𝑃 | 𝑅𝑃 . 𝐿 | 𝐿1 𝐿2 | 𝐿 : 𝑀
Atomic Masks 𝑈 ::= ↫ | ↭
Masks 𝑁 ::= 𝑈 | 𝑈 𝑁

To help understand the typing rules, we colorize the types based on their masks. Red types
correspond to ↭ masks and blue types to ↫ masks. In other words, red types are unavailable in the
context and are inferred by the term itself, while blue types are known from the context. We wish
to remark that colors play no role in the theory but are used only for readability. Rules DLit, DVar,
and DAnn apply to terms whose types can be inferred directly from their syntax, and the mask is ↭
since no contextual information is required. Rule DLam states that a lambda term has type 𝑀 ↔ 𝑄
if its mask can be decreased (↫↓ = ↫ and (↫𝑁)↓ = 𝑁), which means that 𝑀 is known from the
context. Rule DSub clears the context if the term 𝐿 is inferable and the mask𝑁 matches type 𝑀.
Besides changing the notion of counters to masks, there is one minor adaptation from the original
type system [Xue and Oliveira 2024] to align with the presentation in Sec. 3. We use the notation
ω →𝐿 𝑀 = 𝑄 in the DSub rule. For STLC, subsumption is trivial, and it just amounts to syntactic
equality and checking whether the shape of types matches masks.

The application rule is the most interesting. First we know that the argument 𝐿2 is typeable with
some mask 𝑈, The function part 𝐿1 is then aware of the increased information by appending the
!ipped mask 𝑈 to𝑁 (↫ = ↭ and ↭ = ↫). The standard bidirectional rule for applications, using the
inferred type of the function to check the arguments, will become a specialized instance of DApp
when 𝑈 is ↫ and𝑁 is ↭. In contrast, when 𝑈 is ↭ the type of the argument must be inferred, and this
information can be used in 𝐿1 as available contextual information. This enables the inference of
lambdas as applicands and the encoding of let-binders. For example, (𝑅x. 𝑅y. x + y) 1 2 is accepted:

DLit
ω →↭ 2 : Int

DLit
ω →↭ 1 : Int

· · · DLam
ω →↫↫↭ (𝑅x. 𝑅y. x + y) : Int ↔ Int ↔ Int

DApp
ω →↫↭ (𝑅x. 𝑅y. x + y) 1 : Int ↔ Int

DApp
ω →↭ (𝑅x. 𝑅y. x + y) 1 2 : Int

A naive implementation of DApp would rely on backtracking, since a choice between infer-
ence and checking would be needed for each argument. Instead, contextual typing provides a
non-backtracking syntax-directed algorithm that can be e"ciently implemented. We omit the
presentation of the algorithm here, and discuss it instead in Sec. 5.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 11. Publication date: January 2026.

11:8 Xu Xue, Chen Cui, Shengyi Jiang, and Bruno C. d. S. Oliveira

ω →𝐿 𝐿 : 𝑀 (Under environment ω, expression 𝐿 has type 𝑀 with𝑁 contextual information.)

ω →↭ 𝑂 : Int
DLit

𝑃 : 𝑀 ↑ ω

ω →↭ 𝑃 : 𝑀
DVar

ω →↫ 𝐿 : 𝑀
ω →↭ (𝐿 : 𝑀) : 𝑀

DAnn
ω, 𝑃 : 𝑀 →𝐿↓ 𝐿 : 𝑄
ω →𝐿 𝑅𝑃 . 𝐿 : 𝑀 ↔ 𝑄

DLam

ω →(𝑀 𝐿) 𝐿1 : 𝑀 ↔ 𝑄 ω →𝑀 𝐿2 : 𝑀
ω →𝐿 𝐿1 𝐿2 : 𝑄

DApp
ω →↭ 𝐿 : 𝑀 ω →𝐿 𝑀 = 𝑄

ω →𝐿 𝐿 : 𝑄
DSub

Fig. 1. Declarative typing rules for STLC.

In general masks where all information is available (such as ↫ or ↫↫) or no information is available
(such as ↭ or ↭↭) can be modeled, respectively, in a traditional bidirectional type system with the
inference and checking modes. In contrast, mixed masks, such as ↫↭ or ↭↫, where only some type
information is available, have no direct correspondence to bidirectional typing. We present the
CTAS for STLC in Fig. 1 to illustrate the key ideas. The syntax of contextual STLC is:

Types 𝑀,𝑄,𝑆,𝑇 ::= Int | 𝑀 ↔ 𝑄
Typing Environments ω ::= · | ω, 𝑃 : 𝑀
Expressions 𝐿 ::= 𝑂 | 𝑃 | 𝑅𝑃 . 𝐿 | 𝐿1 𝐿2 | 𝐿 : 𝑀
Atomic Masks 𝑈 ::= ↫ | ↭
Masks 𝑁 ::= 𝑈 | 𝑈 𝑁

To help understand the typing rules, we colorize the types based on their masks. Red types
correspond to ↭ masks and blue types to ↫ masks. In other words, red types are unavailable in the
context and are inferred by the term itself, while blue types are known from the context. We wish
to remark that colors play no role in the theory but are used only for readability. Rules DLit, DVar,
and DAnn apply to terms whose types can be inferred directly from their syntax, and the mask is ↭
since no contextual information is required. Rule DLam states that a lambda term has type 𝑀 ↔ 𝑄
if its mask can be decreased (↫↓ = ↫ and (↫𝑁)↓ = 𝑁), which means that 𝑀 is known from the
context. Rule DSub clears the context if the term 𝐿 is inferable and the mask𝑁 matches type 𝑀.
Besides changing the notion of counters to masks, there is one minor adaptation from the original
type system [Xue and Oliveira 2024] to align with the presentation in Sec. 3. We use the notation
ω →𝐿 𝑀 = 𝑄 in the DSub rule. For STLC, subsumption is trivial, and it just amounts to syntactic
equality and checking whether the shape of types matches masks.

The application rule is the most interesting. First we know that the argument 𝐿2 is typeable with
some mask 𝑈, The function part 𝐿1 is then aware of the increased information by appending the
!ipped mask 𝑈 to𝑁 (↫ = ↭ and ↭ = ↫). The standard bidirectional rule for applications, using the
inferred type of the function to check the arguments, will become a specialized instance of DApp
when 𝑈 is ↫ and𝑁 is ↭. In contrast, when 𝑈 is ↭ the type of the argument must be inferred, and this
information can be used in 𝐿1 as available contextual information. This enables the inference of
lambdas as applicands and the encoding of let-binders. For example, (𝑅x. 𝑅y. x + y) 1 2 is accepted:

DLit
ω →↭ 2 : Int

DLit
ω →↭ 1 : Int

· · · DLam
ω →↫↫↭ (𝑅x. 𝑅y. x + y) : Int ↔ Int ↔ Int

DApp
ω →↫↭ (𝑅x. 𝑅y. x + y) 1 : Int ↔ Int

DApp
ω →↭ (𝑅x. 𝑅y. x + y) 1 2 : Int

A naive implementation of DApp would rely on backtracking, since a choice between infer-
ence and checking would be needed for each argument. Instead, contextual typing provides a
non-backtracking syntax-directed algorithm that can be e"ciently implemented. We omit the
presentation of the algorithm here, and discuss it instead in Sec. 5.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 11. Publication date: January 2026.

* "Masks" is a re-interpretation of "counters" in the original work "Contextual Typing"

Contextual Typing [Xue & Oliveira 2024]

8

find a way to specify the "partial-inference"

 No contextual information: Γ ⊢■ e : A

 Full contextual information: Γ ⊢□ e : A

 Partial contextual information: Γ ⊢□■ e : A → B

Masks characterize what information we know from the context

Contextual Type Assignment Systems (CTAS):
Don't use modes, use masks.

9

find a way to specify the "partial-inference"

Application rules as mask collectors

Contextual Type Assignment Systems (CTAS):
Don't use modes, use masks.

11:8 Xu Xue, Chen Cui, Shengyi Jiang, and Bruno C. d. S. Oliveira

ω →𝐿 𝐿 : 𝑀 (Under environment ω, expression 𝐿 has type 𝑀 with𝑁 contextual information.)

ω →↭ 𝑂 : Int
DLit

𝑃 : 𝑀 ↑ ω

ω →↭ 𝑃 : 𝑀
DVar

ω →↫ 𝐿 : 𝑀
ω →↭ (𝐿 : 𝑀) : 𝑀

DAnn
ω, 𝑃 : 𝑀 →𝐿↓ 𝐿 : 𝑄
ω →𝐿 𝑅𝑃 . 𝐿 : 𝑀 ↔ 𝑄

DLam

ω →(𝑀 𝐿) 𝐿1 : 𝑀 ↔ 𝑄 ω →𝑀 𝐿2 : 𝑀
ω →𝐿 𝐿1 𝐿2 : 𝑄

DApp
ω →↭ 𝐿 : 𝑀 ω →𝐿 𝑀 = 𝑄

ω →𝐿 𝐿 : 𝑄
DSub

Fig. 1. Declarative typing rules for STLC.

In general masks where all information is available (such as ↫ or ↫↫) or no information is available
(such as ↭ or ↭↭) can be modeled, respectively, in a traditional bidirectional type system with the
inference and checking modes. In contrast, mixed masks, such as ↫↭ or ↭↫, where only some type
information is available, have no direct correspondence to bidirectional typing. We present the
CTAS for STLC in Fig. 1 to illustrate the key ideas. The syntax of contextual STLC is:

Types 𝑀,𝑄,𝑆,𝑇 ::= Int | 𝑀 ↔ 𝑄
Typing Environments ω ::= · | ω, 𝑃 : 𝑀
Expressions 𝐿 ::= 𝑂 | 𝑃 | 𝑅𝑃 . 𝐿 | 𝐿1 𝐿2 | 𝐿 : 𝑀
Atomic Masks 𝑈 ::= ↫ | ↭
Masks 𝑁 ::= 𝑈 | 𝑈 𝑁

To help understand the typing rules, we colorize the types based on their masks. Red types
correspond to ↭ masks and blue types to ↫ masks. In other words, red types are unavailable in the
context and are inferred by the term itself, while blue types are known from the context. We wish
to remark that colors play no role in the theory but are used only for readability. Rules DLit, DVar,
and DAnn apply to terms whose types can be inferred directly from their syntax, and the mask is ↭
since no contextual information is required. Rule DLam states that a lambda term has type 𝑀 ↔ 𝑄
if its mask can be decreased (↫↓ = ↫ and (↫𝑁)↓ = 𝑁), which means that 𝑀 is known from the
context. Rule DSub clears the context if the term 𝐿 is inferable and the mask𝑁 matches type 𝑀.
Besides changing the notion of counters to masks, there is one minor adaptation from the original
type system [Xue and Oliveira 2024] to align with the presentation in Sec. 3. We use the notation
ω →𝐿 𝑀 = 𝑄 in the DSub rule. For STLC, subsumption is trivial, and it just amounts to syntactic
equality and checking whether the shape of types matches masks.

The application rule is the most interesting. First we know that the argument 𝐿2 is typeable with
some mask 𝑈, The function part 𝐿1 is then aware of the increased information by appending the
!ipped mask 𝑈 to𝑁 (↫ = ↭ and ↭ = ↫). The standard bidirectional rule for applications, using the
inferred type of the function to check the arguments, will become a specialized instance of DApp
when 𝑈 is ↫ and𝑁 is ↭. In contrast, when 𝑈 is ↭ the type of the argument must be inferred, and this
information can be used in 𝐿1 as available contextual information. This enables the inference of
lambdas as applicands and the encoding of let-binders. For example, (𝑅x. 𝑅y. x + y) 1 2 is accepted:

DLit
ω →↭ 2 : Int

DLit
ω →↭ 1 : Int

· · · DLam
ω →↫↫↭ (𝑅x. 𝑅y. x + y) : Int ↔ Int ↔ Int

DApp
ω →↫↭ (𝑅x. 𝑅y. x + y) 1 : Int ↔ Int

DApp
ω →↭ (𝑅x. 𝑅y. x + y) 1 2 : Int

A naive implementation of DApp would rely on backtracking, since a choice between infer-
ence and checking would be needed for each argument. Instead, contextual typing provides a
non-backtracking syntax-directed algorithm that can be e"ciently implemented. We omit the
presentation of the algorithm here, and discuss it instead in Sec. 5.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 11. Publication date: January 2026.

Contextual Typing [Xue & Oliveira 2024]

Contextual Typing [Xue & Oliveira 2024]

10

find a way to avoid backtracking to have both app rules

Contexts () are introduced to store deferred type-checking tasks of argumentsΣ

Contextual Typing 266:17

� ` ⌃) 4) � (Typing: under environment � and context ⌃, expression 4 infers type �.)

� ` ⇤) 8) Int
ALit

G : � 2 �

� ` ⇤) G) �
AVar

� ` �) 4) ⌫

� ` ⇤) 4 : �) �
AAnn

� ` 42 7! ⌃) 41) � ! ⌫

� ` ⌃) 41 42) ⌫
AApp

� ` ⇤) 42) � �, G : � ` ⌃) 4) ⌫

� ` 42 7! ⌃) _G . 4) � ! ⌫
ALam2

�, G : � ` ⌫) 4) ⇠

� ` � ! ⌫) _G . 4) � ! ⇠
ALam1

� ` ⇤) 6) � ⌃ < ⇤ � ⇡ ⌃

� ` ⌃) 6) �
ASub

� ` � ⇡ ⌃ (Matching: under environment �, type � is matched by context ⌃.)

� ` � ⇡ ⇤
SubEmpty

� ` � ⇡ �
SubType

� ` �) 4) ⇠ � ` ⌫ ⇡ ⌃

� ` � ! ⌫ ⇡ 4 7! ⌃
SubTerm

Fig. 9. Algorithmic typing and matching for the STLC.

provide the consumers with enough type information for checking typeability. Thus we need to
analyse the elimination forms in the language and identify the information that is needed for aiding
the consumers to establish typeability. Section 5 shows how this idea extends to record projections.

Typing. We show the full rules for algorithmic typing in Fig. 9. Typing has the form � ` ⌃)
4) �, which is interpreted as: under typing environment � and a surrounding context ⌃, the
expression 4 infers the type �. Under this interpretation �, ⌃ and 4 are inputs, and the type � is an
output, determined by the three input parameters of the typing relation.
We can group rules ALit, AVar and AAnn together: they all infer the type without needing any

contextual information. Note that these rules cover all the generic consumer expressions. The
empty surrounding context ⇤ expresses that no contextual information is needed. ALit and AVar

are unsurprising. AAnn infers the type � from its annotation and the � will become surrounding
context information to infer the expression 4 .

There is a single rule for applications, unlike in the QTAS. Rule AApp simply adds the argument
42 to the surrounding context ⌃. Using this extended context we then infer 41’s type, and obtain
the function type � ! ⌫. The type ⌫ will be the result type of the application 41 42. Conversely, we
now have two rules for lambda expressions, unlike the QTAS, which has a single rule. Rules ALam1
and ALam2 cover two cases when inferring the type of a lambda expression. The �rst case (rule
ALam1) is that the context is a type � ! ⌫, which means that the lambda is fully annotated. We
use the type � as the type of bound variable G and add ⌫ to the context to help infer the lambda
body. After we obtain the type ⇠ , we then infer the type � ! ⇠ . The second case (rule ALam2) is
when the �rst entry in the context is an argument expression 42. In this case, we infer the type of
42 and obtain the type �. The type � is used as the type for the lambda variable G , and we further
infer the type lambda body with the context ⌃. Once we get the type ⌫, the �nal inference result
for the lambda expression is � ! ⌫. Importantly, note that the two rules do not overlap since the
syntactic form for the context is di�erent. So the rules are syntax-directed.

Subsumption and the matching judgment. The subsumption rule ASub accounts for generic
consumers when their surrounding context is not empty (⌃ < ⇤). We �rst infer their types with the
empty context and put the type � into a new matching judgment � ` � ⇡ ⌃ that matches the type
� with ⌃. Subsumption does not deal with applications and lambda expressions, since the rules
that cover those expressions already deal with the cases when the context is not empty.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 266. Publication date: August 2024.

In algorithm, don't decide inference/checking of arguments in
application, decide it when it's "consumed".

Contextual Typing [Xue & Oliveira 2024]

11

Two systems (specification & algorithm)
are proved to be equivalent.

Local Contextual Type Inference

12

• It's a refinement of LTI using contextual typing ideas;

• It gives rise to a modular rule design;

• It, just like LTI, advocates matching instead of unification;

• It provides clearer specification, making it closer to canonical systems (System F);

• It removes practical restrictions of LTI and offers better locality;

• It's rigorously studied (all are mechanized)

• We hope it stands as a principled and practical foundation for inference

Example (hypothetical): id 1

13

Local Contextual Type Inference 11:43

erase(𝐿) = 𝐿

erase(𝑀) = 𝑀

erase(𝑁𝑀 . 𝑂) = 𝑁𝑀 . erase(𝑂)
erase(𝑂1 𝑂2) = erase(𝑂1) erase(𝑂2)
erase(𝑂 : 𝑃) = erase(𝑂)
erase(ω𝑄 . 𝑂) = erase(𝑂)
erase(𝑂 @𝑃) = erase(𝑂)

Fig. 20. Erasure function for implicit System F.

S-Refl

ε → 𝑃 ↑ 𝑃

S-Trans
ε → 𝑃 ↑ 𝑅 ε → 𝑅 ↑ 𝑆

ε → 𝑃 ↑ 𝑆

S-↓L
ε → 𝑆 ε → [𝑆/𝑄]𝑃 ↑ 𝑅

ε → ↓𝑄 . 𝑃 ↑ 𝑅

S-↓R
𝑄 ω FV(𝑃) ε,𝑄 → 𝑃 ↑ 𝑅

ε → 𝑃 ↑ ↓𝑄 . 𝑅

S-Arr
ε → 𝑆 ↑ 𝑃 ε → 𝑅 ↑ 𝑇

ε → 𝑃 ↔ 𝑅 ↑ 𝑆 ↔ 𝑇

S-↓
ε,𝑄 → 𝑃 ↑ 𝑅

ε → ↓𝑄 . 𝑃 ↑ ↓𝑄 . 𝑅

Fig. 21. Subtyping rules for implicit System F.

G Implicit System F
In this section, we expand the text in Sec. 3.3, which shows that F𝐿 is sound with respect to the
implicit System F in Chrz!szcz [1998]. We present its syntax, the rules of subtyping and typing,
and the de"nition of the erasure function.

Syntax. The syntax of implicit System F is given below. Unlike the term syntax of F𝐿 , implicit
System F does not have annotated terms, type abstractions, or type applications.

Types 𝑃,𝑅,𝑆,𝑇 ::= Int | 𝑃 ↔ 𝑅 | 𝑄 | ↓𝑄 . 𝑃
Expressions 𝑂 ::= 𝐿 | 𝑀 | 𝑁𝑀 . 𝑂 | 𝑂1 𝑂2
Environments ε ::= · | ε, 𝑀 : 𝑃 | ε,𝑄

The erase function transforms expressions of F𝐿 to expressions of implicit System F, as de"ned
in Fig. 20. The de"nition is straightforward: literals and variables are left unchanged; lambda
abstractions and applications preserve their structure while recursively erasing subterms. Erasure
occurs in the remaining three cases: type annotations are removed while the underlying term is
erased; type abstractions eliminate the type binder and erase the body; type applications discard
the type argument and recursively erase the term 𝑂 .

Subtyping. We "rst present the subtyping relation for implicit System F, which replicates the
subtyping shown in Chrz!szcz [1998]. S-Refl and S-Trans are axiomatic rules for subtyping that
make re#exivity and transitivity built in. S-↓L guesses a type 𝑆 and allows a universal type to be a
subtype of a type 𝑅 if its instantiated type [𝑆/𝑄]𝑃 is a subtype of 𝑅. S-↓R allows a type 𝑃 to be a
subtype of a universal type ↓𝑄 . 𝑅, if 𝑃 is a subtype of 𝑅 under an extended environment ε,𝑄 . Rules
S-Arr and S-↓ deal with function types and universal types in a standard way.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 11. Publication date: January 2026.

Unrestricted is undecidable, people often compromise to a decidable fragment∀L

ω → 𝐿 ↑ ε ↓ ω↔ ↭ 𝑀 (Under ϑ and ω, type 𝐿 is the subtype of ε and outputs ω↔ and 𝑀.)

ω → 𝐿 ↑ ↫ ↓ ω↭ 𝐿
AS-Empty

ω → 𝐿 ↑↗ 𝑀 ↓ ω↔

ω → 𝐿 ↑ 𝑀 ↓ ω↔ ↭ 𝑀
AS-Type

ω,↘ ↑ 𝑁 ↑ ≃ → 𝐿 ↑ 𝑂 ! ε ↓ ω↔,𝑃 ↑ 𝑁 ↑ 𝑄 ↭ 𝑀

ω → ⇐𝑁 . 𝐿 ↑ 𝑂 ! ε ↓ ω↔ ↭ [𝑃/𝑄/𝑁]𝑀
AS-⇐L

ω → 𝐿 ⇒ 𝑂 ⇒ 𝐿↔ ↓ ω↔ ω↔ → 𝑀 ↑ ε ↓ ω↔↔ ↭ 𝑄

ω → 𝐿 ⇑ 𝑀 ↑ 𝑂 ! ε ↓ ω↔↔ ↭ 𝐿↔ ⇑ 𝑄
AS-Trm

ω[𝐿 ↑ 𝑁 ↑ 𝑀] → 𝑀 ↑ ε ↓ ω↔ ↭ 𝑀

ω[𝐿 ↑ 𝑁 ↑ 𝑀] → 𝑁 ↑ ε ↓ ω↔ ↭ 𝑀
AS-SVar

4 In Meeting
Discuss about the consequence of adopting splitting over direct grounding. The cons of direct
grounding is to have a stronger invariant that the output environment should be the same. But
splitting won’t promise that (?), perhaps it can be since it’s closed and we know that. But what
about the principle in subtyping system?

Var
ϑ → id : ⇐𝑁 . 𝑁 ⇑ 𝑁

⇐L
ϑ → ⇐𝑁 . 𝑁 ⇑ 𝑁 ↑ Int ⇑ Int Sub

ϑ → id : Int ⇑ Int
Lit

ϑ → 1 : Int App
ϑ → id 1 : Int

3

Example (w/masks): id 1

14

ω → 𝐿 ↑ ε ↓ ω↔ ↭ 𝑀 (Under ϑ and ω, type 𝐿 is the subtype of ε and outputs ω↔ and 𝑀.)

ω → 𝐿 ↑ ↫ ↓ ω↭ 𝐿
AS-Empty

ω → 𝐿 ↑↗ 𝑀 ↓ ω↔

ω → 𝐿 ↑ 𝑀 ↓ ω↔ ↭ 𝑀
AS-Type

ω,↘ ↑ 𝑁 ↑ ≃ → 𝐿 ↑ 𝑂 ! ε ↓ ω↔,𝑃 ↑ 𝑁 ↑ 𝑄 ↭ 𝑀

ω → ⇐𝑁 . 𝐿 ↑ 𝑂 ! ε ↓ ω↔ ↭ [𝑃/𝑄/𝑁]𝑀
AS-⇐L

ω → 𝐿 ⇒ 𝑂 ⇒ 𝐿↔ ↓ ω↔ ω↔ → 𝑀 ↑ ε ↓ ω↔↔ ↭ 𝑄

ω → 𝐿 ⇑ 𝑀 ↑ 𝑂 ! ε ↓ ω↔↔ ↭ 𝐿↔ ⇑ 𝑄
AS-Trm

ω[𝐿 ↑ 𝑁 ↑ 𝑀] → 𝑀 ↑ ε ↓ ω↔ ↭ 𝑀

ω[𝐿 ↑ 𝑁 ↑ 𝑀] → 𝑁 ↑ ε ↓ ω↔ ↭ 𝑀
AS-SVar

4 In Meeting
Discuss about the consequence of adopting splitting over direct grounding. The cons of direct
grounding is to have a stronger invariant that the output environment should be the same. But
splitting won’t promise that (?), perhaps it can be since it’s closed and we know that. But what
about the principle in subtyping system?

Var
ϑ → id : ⇐𝑁 . 𝑁 ⇑ 𝑁

⇐L
ϑ → ⇐𝑁 . 𝑁 ⇑ 𝑁 ↑ Int ⇑ Int Sub

ϑ → id : Int ⇑ Int
Lit

ϑ → 1 : Int App
ϑ → id 1 : Int

3

ω → 𝐿 ↑ ε ↓ ω↔ ↭ 𝑀 (Under ϑ and ω, type 𝐿 is the subtype of ε and outputs ω↔ and 𝑀.)

ω → 𝐿 ↑ ↫ ↓ ω↭ 𝐿
AS-Empty

ω → 𝐿 ↑↗ 𝑀 ↓ ω↔

ω → 𝐿 ↑ 𝑀 ↓ ω↔ ↭ 𝑀
AS-Type

ω,↘ ↑ 𝑁 ↑ ≃ → 𝐿 ↑ 𝑂 ! ε ↓ ω↔,𝑃 ↑ 𝑁 ↑ 𝑄 ↭ 𝑀

ω → ⇐𝑁 . 𝐿 ↑ 𝑂 ! ε ↓ ω↔ ↭ [𝑃/𝑄/𝑁]𝑀
AS-⇐L

ω → 𝐿 ⇒ 𝑂 ⇒ 𝐿↔ ↓ ω↔ ω↔ → 𝑀 ↑ ε ↓ ω↔↔ ↭ 𝑄

ω → 𝐿 ⇑ 𝑀 ↑ 𝑂 ! ε ↓ ω↔↔ ↭ 𝐿↔ ⇑ 𝑄
AS-Trm

ω[𝐿 ↑ 𝑁 ↑ 𝑀] → 𝑀 ↑ ε ↓ ω↔ ↭ 𝑀

ω[𝐿 ↑ 𝑁 ↑ 𝑀] → 𝑁 ↑ ε ↓ ω↔ ↭ 𝑀
AS-SVar

4 In Meeting
Discuss about the consequence of adopting splitting over direct grounding. The cons of direct
grounding is to have a stronger invariant that the output environment should be the same. But
splitting won’t promise that (?), perhaps it can be since it’s closed and we know that. But what
about the principle in subtyping system?

Var
ϑ → id : ⇐𝑁 . 𝑁 ⇑ 𝑁

⇐L
ϑ → ⇐𝑁 . 𝑁 ⇑ 𝑁 ↑ Int ⇑ Int Sub

ϑ → id : Int ⇑ Int
Lit

ϑ → 1 : Int App
ϑ → id 1 : Int

Var
ϑ →↫ id : ⇐𝑁 . 𝑁 ⇑ 𝑁

⇐L
ϑ →↬↫ ⇐𝑁 . 𝑁 ⇑ 𝑁 ↑ Int ⇑ Int

Sub
ϑ →↬↫ id : Int ⇑ Int

Lit
ϑ →↫ 1 : Int App

ϑ →↫ id 1 : Int

3

Key insight: Leverage masks to ensure the guess can be safely made.

Restrict rule with masks∀L

15

• Polymorphic types can only be instantiated to function types.

• Implicit polymorphism is application triggered only.

• Instantiability guarantees us that we are able to make the guess;

11:10 Xu Xue, Chen Cui, Shengyi Jiang, and Bruno C. d. S. Oliveira

ω →𝐿 𝐿 ↑ 𝑀 (Under ω, type 𝐿 is a subtype of 𝑀 and𝑁 contextual information is known for 𝑀.)

ω →↭ 𝐿 ↑ 𝐿
DS-Refl

ω →↫ Int ↑ Int
DS-Int

ω →↫ 𝑂 ↑ 𝑂
DS-Var

ω,𝑂 →↫ 𝐿 ↑ 𝑀

ω →↫ ↓𝑂 . 𝐿 ↑ ↓𝑂 . 𝑀
DS-↓

ω →↫ 𝑃 ↑ 𝐿 ω →𝐿 ↔↗ 𝑀 ↑ 𝑄

ω →𝐿 𝐿 ↘ 𝑀 ↑ 𝑃 ↘ 𝑄
DS-Arr

ω → 𝑀 𝐿𝑀
(𝑁 𝐿) ω →(𝑁 𝐿) [𝑀/𝑂]𝐿 ↑ 𝑃 ↘ 𝑄

ω →(𝑁 𝐿) ↓𝑂 . 𝐿 ↑ 𝑃 ↘ 𝑄
DS-↓L

𝐿𝑀
↭ = 𝑂 ω FV(𝐿) (1)

𝐿𝑀
↫ = true (2)

𝑂𝑀
↫̃ = true (3)

(𝐿 ↘ 𝑀)𝑀(↫ 𝐿) = 𝑂 ≃ FV(𝐿) (4)
(𝐿 ↘ 𝑀)𝑀(𝑁 𝐿) = 𝑂 ω FV(𝐿) ⇐ 𝑀𝑀

𝐿 (5)
(↓𝑅 . 𝐿)𝑀(𝑁 𝐿) = 𝐿𝑀

(𝑁 𝐿) (6)

Fig. 3. Declarative subtyping rules and instantiability.

rule relates the type of id (↓𝑂 . 𝑂 ↘ 𝑂) to its instantiated type ((↓𝑂 . 𝑂 ↘ 𝑂) ↘ Int ↘ Int). The
subtyping derivation and instantiation details are discussed in the next.

3.2 Contextual Subtyping
The contextual subtyping rules are shown in Fig. 3. The mask indicates how much contextual
information is available for the supertype. The mask ↫ means we have full information about the
supertype, leading to traditional subtyping. Rules DS-Int, DS-Var and DS-↓ all use the ↫ mask.
Because we are modeling System F, all subtyping checks with a ↫mask imply syntactic equivalence
checks. The ↫𝑁 mask means that the !rst input type of the supertype is known to be available in
the context, and it can be used for instantiating polymorphic functions and performing subtyping
checks. For function types (rule DS-Arr), we decrease the mask ((a m) ↔↗ = m and ↫ ↔↗ = ↫), and do
contravariant checks of input types and covariant checks of output types.

Instantiation rule. The DS-↓L rule is key to the implicit instantiation of polymorphic types. A
polymorphic type is a subtype of a function type if its type argument 𝑂 appears in known parts of
contextual information, characterized as instantiability. We guess the type 𝑀, and then check that
the substituted result [𝑀/𝑂]𝐿 is a subtype of function type 𝑃 ↘ 𝑄 . Keen readers may notice that
the mask is 𝑆 𝑁 in rule DS-↓L. This means that we have arguments in the context, and instantiation
can only happen in function application. Moreover, the mask 𝑆 𝑁 explains why the supertype is
a function type: since we are in the context of an application, we expect the supertype to be a
function type. Therefore, the formulation of rule DS-↓L nicely expresses the observation about
local type inference that implicit instantiations can only be triggered by applications.

Instantiability. The instantiability restriction 𝐿𝑀
𝐿 that appears in rule DS-↓L determines when

solutions for 𝑂 can be found. It can be read as “𝑂 is instantiable in type 𝐿 with 𝑁 contextual
information”. We present its rules in Fig. 3. Our instantiability judgment uses the mask as a
condition to indicate the known parts of types. Essentially instantiability covers three cases:
• Type variable 𝑂 does not appear in type 𝐿. In this case, there is no need to !nd a solution for the
instantiation; for example, consider ↓𝑂 . Int ↘ Int. This case can be handled by (1) and (2).

• Type variable 𝑂 appears in known output types. For example, in f : ↓𝑂 . Int ↘ 𝑂 ↘ 𝑂 → (f 1) :
Int ↘ Int, the mask for f is ↫↫, indicating that 𝑂 ↘ 𝑂 is in the known part of the type. By
further checking the occurrence of 𝑂 in 𝑂 ↘ 𝑂 we can guess the solution for 𝑂 , handled by (2).
Rule (3) deals with the case where a variable 𝑂 covers multiple known positions. For example,
in f : ↓𝑂 . 𝑂 → (f 1) : Int, we know both the input and output types of f, from arguments and
annotations, we can instantiate 𝑂 with Int ↘ Int to accept this example. We allow this by de!ning

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 11. Publication date: January 2026.

Local Contextual Type Inference 11:43

erase(𝐿) = 𝐿

erase(𝑀) = 𝑀

erase(𝑁𝑀 . 𝑂) = 𝑁𝑀 . erase(𝑂)
erase(𝑂1 𝑂2) = erase(𝑂1) erase(𝑂2)
erase(𝑂 : 𝑃) = erase(𝑂)
erase(ω𝑄 . 𝑂) = erase(𝑂)
erase(𝑂 @𝑃) = erase(𝑂)

Fig. 20. Erasure function for implicit System F.

S-Refl

ε → 𝑃 ↑ 𝑃

S-Trans
ε → 𝑃 ↑ 𝑅 ε → 𝑅 ↑ 𝑆

ε → 𝑃 ↑ 𝑆

S-↓L
ε → 𝑆 ε → [𝑆/𝑄]𝑃 ↑ 𝑅

ε → ↓𝑄 . 𝑃 ↑ 𝑅

S-↓R
𝑄 ω FV(𝑃) ε,𝑄 → 𝑃 ↑ 𝑅

ε → 𝑃 ↑ ↓𝑄 . 𝑅

S-Arr
ε → 𝑆 ↑ 𝑃 ε → 𝑅 ↑ 𝑇

ε → 𝑃 ↔ 𝑅 ↑ 𝑆 ↔ 𝑇

S-↓
ε,𝑄 → 𝑃 ↑ 𝑅

ε → ↓𝑄 . 𝑃 ↑ ↓𝑄 . 𝑅

Fig. 21. Subtyping rules for implicit System F.

G Implicit System F
In this section, we expand the text in Sec. 3.3, which shows that F𝐿 is sound with respect to the
implicit System F in Chrz!szcz [1998]. We present its syntax, the rules of subtyping and typing,
and the de"nition of the erasure function.

Syntax. The syntax of implicit System F is given below. Unlike the term syntax of F𝐿 , implicit
System F does not have annotated terms, type abstractions, or type applications.

Types 𝑃,𝑅,𝑆,𝑇 ::= Int | 𝑃 ↔ 𝑅 | 𝑄 | ↓𝑄 . 𝑃
Expressions 𝑂 ::= 𝐿 | 𝑀 | 𝑁𝑀 . 𝑂 | 𝑂1 𝑂2
Environments ε ::= · | ε, 𝑀 : 𝑃 | ε,𝑄

The erase function transforms expressions of F𝐿 to expressions of implicit System F, as de"ned
in Fig. 20. The de"nition is straightforward: literals and variables are left unchanged; lambda
abstractions and applications preserve their structure while recursively erasing subterms. Erasure
occurs in the remaining three cases: type annotations are removed while the underlying term is
erased; type abstractions eliminate the type binder and erase the body; type applications discard
the type argument and recursively erase the term 𝑂 .

Subtyping. We "rst present the subtyping relation for implicit System F, which replicates the
subtyping shown in Chrz!szcz [1998]. S-Refl and S-Trans are axiomatic rules for subtyping that
make re#exivity and transitivity built in. S-↓L guesses a type 𝑆 and allows a universal type to be a
subtype of a type 𝑅 if its instantiated type [𝑆/𝑄]𝑃 is a subtype of 𝑅. S-↓R allows a type 𝑃 to be a
subtype of a universal type ↓𝑄 . 𝑅, if 𝑃 is a subtype of 𝑅 under an extended environment ε,𝑄 . Rules
S-Arr and S-↓ deal with function types and universal types in a standard way.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 11. Publication date: January 2026.

Instantiability: when you can make the guess

16

Local Contextual Type Inference 11:11

→𝐿 𝑀 . 𝐿 ↑ (𝐿 ↑ 𝐿) ↑ 𝑀 ↑ 𝑀

Int ↑ (Int ↑ Int) ↑ Int ↑ Int

f 1 (𝑁x. x) 2
↭ ↫ ↭ ↫

↓

Fig. 4. Visualization of instantiability, subtyping and arguments.

the relation of isomorphic ↭, represented as ↭̃ (↭̃ := ↭ | ↭ ↭̃). Once the mask is isomorphic to ↭
and corresponds to a variable 𝐿 , we are able to guess the 𝐿 .

• Type variable 𝐿 appears in the position of known type arguments. The simplest case is id 1, and
for this case the mask is ↭↫, indicating the input type 𝐿 is known, handled by (4).

(5) and (6) simply cover the inductive cases and delegate instantiability to the subparts of the
type. From (5) we can see our instantiability enforces a left-to-right order and exploits the known
information from the input to the output types. This helps it to align with the algorithm in Sec. 5.

Correspondence between masks, types, and arguments. Fig. 4 illustrates the correspondence be-
tween masks, subtypes, supertypes, and arguments in subtyping and instantiability, using the
slightly arti!cial example (f 1 (𝑁x. x) 2 3) : Int. The !rst row shows the type bound to variable f,
which is →𝐿 𝑀 . 𝐿 ↑ (𝐿 ↑ 𝐿) ↑ 𝑀 ↑ →𝑂 . 𝑂 . The second row shows f’s instantiated types when it
is applied to its arguments and annotated. Another way to read the !rst two rows (surrounded in
dashed boxes) is that they represent the subtype and supertypes of a subtyping statement, with the
mask ↭↫↭↭↭ shown in the fourth row. The third row shows the application expression, with f’s
arguments and outer annotation Int. We highlight their correspondence with vertical gray blobs.
In the type of f, 𝐿 and 𝑀 are instantiable based on the two ↭ masks, which are provided by the
inferable arguments 1 and 2. The argument 𝑁x. x can be checked against 𝐿 ↑ 𝐿 with full contextual
information, thanks to the instantiability of 𝐿 . Finally, the instantiability of 𝑂 is determined by the
mask ↭↭, according to rule (3), using combined information from the inferable argument 3 and the
annotation Int. This example demonstrates how F𝐿 can handle problematic examples for Pierce and
Turner’s LTI approach, such as those shown in Sec. 2.2.

Properties. Subtyping is re"exive for the ↫ mask as shown by rule DS-Refl, and we show that
re"exivity also holds for the ↭ mask. Furthermore, subtyping is transitive for arbitrary masks.

T!"#$"% 3.1 (R"&’"()*)+, #& S-.+,/)01). ω ↔↭ 𝑃 ↓ 𝑃.

T!"#$"% 3.2 (T$203)+)*)+, #& 3-.+,/)01). If ω ↔𝑀 𝑃 ↓ 𝑄 and ω ↔𝑀 𝑄 ↓ 𝑅 , then ω ↔𝑀 𝑃 ↓ 𝑅 .

Examples. We complete our example discussed in Sec. 3.1 with the subtyping derivation. In this
example, we !rst apply the DS-→L rule because the subtype is polymorphic and the supertype is a
function type. We know that 𝐿 is instantiable since it appears in the input type indicated by the ↭
mask. Then, we guess the solution for 𝐿 , perform the substitution, and obtain a function type as
the subtype. DS-Arr then eliminates the mask and checks the input and output types. Subsequently,
we encounter a similar situation and need to apply the DS-→L rule again. We guess 𝐿 to have type
Int and perform the remaining subtyping checks.

· · ·
· · ·

· · ·
· · ·

DS-Refl
ω ↔↫ Int ↓ Int

DS-Arr
ω ↔↭↫ [Int/𝐿]𝐿 ↑ 𝐿 ↓ Int ↑ Int

DS-→L
ω ↔↭↫ →𝐿 . 𝐿 ↑ 𝐿 ↓ Int ↑ Int

DS-Arr
ω ↔↭↭↫ [→𝐿 . 𝐿 ↑ 𝐿/𝐿]𝐿 ↑ 𝐿 ↓ (→𝐿 . 𝐿 ↑ 𝐿) ↑ Int ↑ Int

DS-→L
ω ↔↭↭↫ →𝐿 . 𝐿 ↑ 𝐿 ↓ (→𝐿 .𝐿 ↑ 𝐿) ↑ Int ↑ Int

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 11. Publication date: January 2026.

• Left-to-right traversal;

• Interleaved inference and checking of arguments

Towards Algorithm: Matching Subtyping

17

• Solution of matching variables cannot contain other matching variables

• Different to unification: α = β -> β is disallowed in matching.

• Invariant: matching variables can only appear on one side.

• Matching variables: track solved instantiations;

Local Contextual Type Inference 11:15

ω ⊋ ε →𝐿 𝐿 ↑+ 𝑀 (type 𝐿 is a subtype of 𝑀 and𝑁 contextual information is known for 𝑀)
ω ⊋ ε →𝐿 𝐿 ↑↓ 𝑀 (type 𝐿 is a subtype of 𝑀 and𝑁 contextual information is known for 𝐿)

ω ⊋ ε →↭ 𝐿 ↑+ [ε]𝐿
IS-Refl

ω ⊋ ε →↫ Int ↑± Int
IS-Int

𝑂 ↔ (ω ⊋ ε)
ω ⊋ ε →↫ 𝑂 ↑± 𝑂

IS-Var

ω ⊋ ε →↫ 𝑃 ↑↗ 𝐿 ω ⊋ ε →↫ 𝑀 ↑± 𝑄

ω ⊋ ε →↫ 𝐿 ↘ 𝑀 ↑± 𝑃 ↘ 𝑄
IS-Arr

ω ⊋ ε →↫ 𝑃 ↑↓ 𝐿 ω ⊋ ε →𝐿 𝑀 ↑+ 𝑄

ω ⊋ ε →(𝑀 𝐿) 𝐿 ↘ 𝑀 ↑+ 𝑃 ↘ 𝑄
IS-Arr-S

ω ⊋ ε,𝑂 →↫ 𝐿 ↑± 𝑀

ω ⊋ ε →↫ ≃𝑂 . 𝐿 ↑± ≃𝑂 . 𝑀
IS-≃

ω → 𝑀 𝐿𝑁
(𝑀 𝐿) ω ⊋ ε,𝑂 = 𝑀 →(𝑀 𝐿) 𝐿 ↑+ 𝑃 ↘ 𝑄

ω ⊋ ε →(𝑀 𝐿) ≃𝑂 . 𝐿 ↑+ 𝑃 ↘ 𝑄
IS-≃L

ω ⊋ ε[𝑂 = 𝐿] →𝐿 𝐿 ↑+ 𝑀

ω ⊋ ε[𝑂 = 𝐿] →𝐿 𝑂 ↑+ 𝑀
IS-Var-L

ω ⊋ ε[𝑂 = 𝐿] →↫ 𝐿 ↑↓ 𝑂
IS-Var-R

Fig. 6. Matching subtyping.
which are new to this system. Rule IS-Var-L is in positive mode. When we have a matching variable
as a subtype, then we look up the environment and obtain the solution𝐿 (we use the syntactic sugar
ε[𝑂 = 𝐿] for ε1,𝑂 = 𝐿,ε2), then perform the subtyping between the solution and the supertype 𝑀.
IS-Var-R is in negative mode, and can only occur with the ↫ mask. If a matching variable occurs as
a supertype, we !nd its solution and check the equivalence between the subtype and the solution.

Examples. We rerun our examples using matching subtyping rules. The key di"erences from the
example shown in Sec. 3.2 are three: (1) In IS-≃L, instead of directly substituting the type with the
guessed solution, we record it as a matching variable in the subtyping environment; (2) matching
variables are retrieved when a variable appears as the subtype in IS-Var-L; (3) the interpretation of
masks depends on the polarity (re#ected in colors): if the subtyping is in negative mode, the mask
will describe the contextual information about subtypes instead of supertypes.

· · ·

IS-Var-R
ω ⊋ 𝑂 = ≃𝑅 . 𝑅 ↘ 𝑅 →↫ ≃𝑅 . 𝑅 ↘ 𝑅 ↑↓ 𝑂

· · ·
· · ·

IS-Refl
ω ⊋ 𝑂 = ≃𝑅 . 𝑅 ↘ 𝑅, 𝑅 = Int →↭ 𝑅 ↑+ Int

IS-Arr-S
ω ⊋ 𝑂 = ≃𝑅 . 𝑅 ↘ 𝑅, 𝑅 = Int →↫↭ 𝑅 ↘ 𝑅 ↑+ Int ↘ Int

IS-≃L
ω ⊋ 𝑂 = ≃𝑅 . 𝑅 ↘ 𝑅 →↫↭ ≃𝑅 . 𝑅 ↘ 𝑅 ↑+ Int ↘ Int

IS-Var-L
ω ⊋ 𝑂 = ≃𝑅 . 𝑅 ↘ 𝑅 →↫↭ 𝑂 ↑+ Int ↘ Int

IS-Arr-S
ω ⊋ 𝑂 = ≃𝑅 . 𝑅 ↘ 𝑅 →↫↫↭ 𝑂 ↘ 𝑂 ↑+ (≃𝑅 . 𝑅 ↘ 𝑅) ↘ Int ↘ Int

IS-≃L
ω ⊋ · →↫↫↭ ≃𝑂 . 𝑂 ↘ 𝑂 ↑+ (≃𝑅 . 𝑅 ↘ 𝑅) ↘ Int ↘ Int

4.4 Soundness and Completeness
To show that matching subtyping is equivalent to declarative subtyping, we prove soundness and
completeness results. We distinguish between the declarative (→d𝐿) and matching (→i𝐿) formulation
of subtyping in the theorems below by using superscript letters “d” and “i”, respectively. The key
idea for establishing the soundness is to eliminate variables in subtyping environments: universal
variables in ε are merged to the typing environment ω (denoted as ω ⇐ ε and de!ned below) and
matching variables are removed after grounding operations on types being performed.

ω ⇐ · = ω ω ⇐ (ε,𝑂) = (ω ⇐ ε),𝑂 ω ⇐ (ε,𝑂 = 𝐿) = ω ⇐ ε
T!"#$"% 4.1 (S#&’(’")) #* S&+,-./’0). If ω ⊋ ε →i𝐿 𝐿 ↑± 𝑀, then (ω ⇐ ε) →d𝐿 [ε]𝐿 ↑ [ε]𝑀.
Completeness can be stated by constructing a subtyping environment ε, and replacing relevant

parts of types with matching variables based on the polarity.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 11. Publication date: January 2026.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Local Contextual Type Inference 111:5

2.2 Local Type Inference Specification and its Limitations
Local type inference has an interesting approach to instantiation. However, the speci!cation
proposed by Pierce and Turner is complex, and has important restrictions compared to practical
implementations. A !rst complication is that they depart from standard System F syntax. Functions
are, by default, uncurried: type arguments (if present) and function arguments are all provided at
once, and polymorphic types are merged with function types having the syntactic form →𝐿 . 𝑀 ↑ 𝑁.

Specifying applications and instantiation. Instantiation is monolithically modelled as part of the
application rules. There are four application rules in total. Two of them are checking rules, and two
others are inference rules. We show the inference rules for explicit and implicit instantiation next:

ω ↓ 𝑂 ↔ →𝐿 . 𝑁 ↑ 𝑃
ω ↓ 𝑄 ↗ [𝑀/𝐿]𝑁

ω ↓ 𝑂 [𝑀] (𝑄) ↔ [𝑀/𝐿]𝑃
S-App

ω ↓ 𝑂 ↔ →𝐿 . 𝑁 ↑ 𝑃 ω ↓ 𝑄 ↔ 𝑅
|𝐿 | > 0 ω ↓ 𝑅 <: [𝑀/𝐿]𝑁

→𝑆 .(ω ↓ 𝑅 <: [𝑆/𝐿]𝑁 implies ω ↓ [𝑀/𝐿]𝑃 <: [𝑆/𝐿]𝑃)
ω ↓ 𝑂 (𝑄) ↔ [𝑀/𝐿]𝑃

S-App-InfSpec

The checking rules are similar and largely duplicate the logic of the inference rules. The rule for
explicit instantiation (rule S-App) can be viewed as a generalization of the standard bidirectional
typing rule presented earlier, except that it deals with uncurried applications and their explicit
instantiations. The number of quanti!ers 𝐿 can be zero, and in that case it falls back to the non-
polymorphic bidirectional function application. Rule S-App-InfSpec is used for function applications
with implicit instantiation, where type arguments are not required. Unlike the !rst rule, it requires
that the arguments are always inferable (ω ↓ 𝑄 ↔ 𝑅). This rule !rst infers the types for both the
function and its arguments, and then uses subtyping to compare the inferred type of the arguments
with the input type of the function, but substituted with the guessed type arguments. There are
a few important conditions in this rule. Firstly, the rule ensures that it is used in a polymorphic
context (|𝐿 | > 0). The last condition enforces that the guessed type is the most precise type. Finally
the condition ω ↓ 𝑅 <: [𝑀/𝐿]𝑁 speci!es how to !nd solutions for instantiation using subtyping.
Notably, the type 𝑁 has free type variables, that must be replaced with guessed instantiations (𝑀),
but no instantiations are needed for the subtype 𝑅 . This suggests that matching is su"cient to
implement the solving process. We will come back to the topic of matching later in Sec. 4.

Uncurried applications and locality. In Pierce and Turner’s formulation of LTI uncurried applica-
tions play an important role, since they de!ne the notion of locality in the approach. The distinction
between local and global type inference is that in local type inference only information from
adjacent nodes in the abstract syntax is used to solve instantiations. In Pierce and Turner’s LTI this
means that all instantiations must be found from looking only at the arguments of an uncurried
function. Consider a constant function applied to two arguments:

const : →𝐿 𝑇 . 𝐿 ↑ 𝑇 ↑ 𝐿 ↓ const true 1 ↔ Bool
Here we have two type arguments instantiated with Bool and Int for the application const true 1.
In an uncurried formulation of this application, which !ts with Pierce and Turner’s approach, rule
S-App-InfSpec can be applied (const(true, 1)). This rule would guess the instantiations and infer
the type Bool. Their rule ensures that, after applying the arguments, all instantiations for type
variables (𝐿 and 𝑇 in this case) in the uncurried application are guessed.

Second class treatment for curried functions. Curried functions can still be encoded, since the
syntax does allow for nested uncurried abstractions. Here we use the syntax 𝑈 𝐿 𝑉 : 𝑀. 𝑄 to denote an
uncurried function with type arguments 𝐿 and arguments 𝑉 : 𝑀. In Pierce and Turner’s LTI we can
write a curried variant of the const function using, for example: const2 = 𝑈𝐿 (𝑉 : 𝐿). 𝑈𝑇 (𝑊 : 𝑇). 𝑉 .

implied by

Towards Algorithm: Input and Output Environments

18

11:18 Xu Xue, Chen Cui, Shengyi Jiang, and Bruno C. d. S. Oliveira

ω ⊋ ε → 𝐿 ↑+ ϑ ↓ ε↔ ↭ 𝑀 (Under ω and ε, type 𝐿 is the subtype of ϑ and outputs ε↔ and 𝑀.)
AS-Empty

ω ⊋ ε →closed 𝐿
ω ⊋ ε → 𝐿 ↑+ ↫ ↓ ε↭ [ε]𝐿

AS-Type
ω ⊋ ε → 𝐿 ↑+ 𝑀 ↓ ε↔

ω ⊋ ε → 𝐿 ↑+ 𝑀 ↓ ε↔ ↭ 𝑀

AS-↗L
ω ⊋ ε,𝑁 → 𝐿 ↑+ 𝑂 ! ϑ ↓ ε↔,𝑁 =?𝑃 ↭ 𝑀

ω ⊋ ε → ↗𝑁 . 𝐿 ↑+ 𝑂 ! ϑ ↓ ε↔ ↭ 𝑀

ω ⊋ ε →closed 𝐿 ω → [ε]𝐿 ↘ 𝑂 ↘ 𝐿↔ ω ⊋ ε → 𝑀 ↑+ ϑ ↓ ε↔ ↭ 𝑄

ω ⊋ ε → 𝐿 ≃ 𝑀 ↑+ 𝑂 ! ϑ ↓ ε↔ ↭ [ε]𝐿 ≃ 𝑄
AS-Trm-C

ω ⊋ ε →open 𝐿 ω → ↫↘ 𝑂 ↘ 𝑃 ω ⊋ ε → 𝑃 ↑⇐ 𝐿 ↓ ε↔ ω ⊋ ε↔ → 𝑀 ↑+ ϑ ↓ ε↔↔ ↭ 𝑄

ω ⊋ ε → 𝐿 ≃ 𝑀 ↑+ 𝑂 ! ϑ ↓ ε↔↔ ↭ 𝑃 ≃ 𝑄
AS-Trm-O

ω ⊋ ε[𝑁 = 𝐿] → 𝐿 ↑+ ϑ ↓ ε[𝑁 = 𝐿] ↭ 𝑀

ω ⊋ ε[𝑁 = 𝐿] → 𝑁 ↑+ ϑ ↓ ε[𝑁 = 𝐿] ↭ 𝑀
AS-SVar

ω → 𝐿 =↘ 𝐿
AS-Infer-Type

ω → 𝑂 ! ϑ =↘ 𝐿

ω ⊋ ε[𝑁] → 𝑁 ↑+ 𝑂 ! ϑ ↓ ε[𝑁 = 𝐿] ↭ 𝐿
As-Infs

ω → ↫↘ 𝑂 ↘ 𝐿 ω → ϑ =↘ 𝑀

ω → 𝑂 ! ϑ =↘ 𝐿 ≃ 𝑀
AS-Infer-Con

Invariants: (1) → ω ⊋ ε and → ω ⊋ ε↔ (2) ε ⇒ ε↔ (3) ω ⊋ ε ↬ ϑ (4) ω ⊋ ε ↬ 𝑀 (5) ω ⊋ ε↔ →closed 𝐿
Fig. 8. Rules for subtyping inference.

as environment extension (Fig. 11). Thirdly, polarity in subtyping checking implies the ground
property: in the positive mode, the supertype is ground, whereas in the negative mode the subtype
is ground (3). Finally, the inference result of subtyping inference is always ground (4).

An important distinction that plays a fundamental role in the subtyping rules is between closed
and open types. A closed type is a type where all matching variables have already been solved,
whereas an open type may contain unsolved variables. For instance consider the type 𝑁 ≃ 𝑁 . If
the subtyping environment contains an unsolved variable for 𝑁 (for instance, ε ⊜ 𝑁) then the
type is said to be open. In contrast, if the subtyping environment contains a solution (for instance,
ε ⊜ (𝑁 = Int)) then the type is said to be closed. All types are closed in output environments (5).

Subtyping inference rules. The rules for subtyping inference are presented in Fig. 8. In rule AS-
Empty, when the context is empty, and 𝐿 is a closed type, we use the input environment ε as
output, and compute the grounded result of 𝐿 as the inference result. Rule AS-Type applies when
the context is a ground type 𝑀. This case corresponds to traditional subtyping, and so we just
switch to subtyping checking. The inferred result is just 𝑀. In rule AS-↗L a universal type ↗𝑁 . 𝐿,
matches a term context 𝑂 ! ϑ. In the algorithm we simply introduce an unsolved matching
variable 𝑁 as a placeholder for the solution found later. Note that it is possible that no solution
is found. For instance, in the case that we have ↗𝑁 . Int ≃ Int, and the argument is 1. The rule
works in both cases: whether a solution is found or not and the notation 𝑁 =?𝑃 expresses these
two possibilities (either we get a solved or an unsolved variable). Rule AS-SVar applies when the
subtype is a solved matching variable. In this case we look up the solution in the environment and
compare it to the context. The last rule AS-Infs applies when the subtype is an unsolved matching
variable 𝑁 . The only possibility that we have to !nd a solution in this case is that we must have
inferable term arguments, and we must also have an output type (the context ending with a full
type). The auxiliary judgment ω → ϑ =↘ 𝐿 takes a context with inferable arguments and an output
type and computes a type 𝐿 that becomes the solution to 𝑁 .

Left-to-right inference. AS-Trm-C and AS-Trm-O are two interesting rules: the subtype is a
function type 𝐿 ≃ 𝑀, and we have a term context 𝑂 ! ϑ in the place of supertype. Although

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 11. Publication date: January 2026.

1) unsolved matching variables α̂

11:18 Xu Xue, Chen Cui, Shengyi Jiang, and Bruno C. d. S. Oliveira

ω ⊋ ε → 𝐿 ↑+ ϑ ↓ ε↔ ↭ 𝑀 (Under ω and ε, type 𝐿 is the subtype of ϑ and outputs ε↔ and 𝑀.)
AS-Empty

ω ⊋ ε →closed 𝐿
ω ⊋ ε → 𝐿 ↑+ ↫ ↓ ε↭ [ε]𝐿

AS-Type
ω ⊋ ε → 𝐿 ↑+ 𝑀 ↓ ε↔

ω ⊋ ε → 𝐿 ↑+ 𝑀 ↓ ε↔ ↭ 𝑀

AS-↗L
ω ⊋ ε,𝑁 → 𝐿 ↑+ 𝑂 ! ϑ ↓ ε↔,𝑁 =?𝑃 ↭ 𝑀

ω ⊋ ε → ↗𝑁 . 𝐿 ↑+ 𝑂 ! ϑ ↓ ε↔ ↭ 𝑀

ω ⊋ ε →closed 𝐿 ω → [ε]𝐿 ↘ 𝑂 ↘ 𝐿↔ ω ⊋ ε → 𝑀 ↑+ ϑ ↓ ε↔ ↭ 𝑄

ω ⊋ ε → 𝐿 ≃ 𝑀 ↑+ 𝑂 ! ϑ ↓ ε↔ ↭ [ε]𝐿 ≃ 𝑄
AS-Trm-C

ω ⊋ ε →open 𝐿 ω → ↫↘ 𝑂 ↘ 𝑃 ω ⊋ ε → 𝑃 ↑⇐ 𝐿 ↓ ε↔ ω ⊋ ε↔ → 𝑀 ↑+ ϑ ↓ ε↔↔ ↭ 𝑄

ω ⊋ ε → 𝐿 ≃ 𝑀 ↑+ 𝑂 ! ϑ ↓ ε↔↔ ↭ 𝑃 ≃ 𝑄
AS-Trm-O

ω ⊋ ε[𝑁 = 𝐿] → 𝐿 ↑+ ϑ ↓ ε[𝑁 = 𝐿] ↭ 𝑀

ω ⊋ ε[𝑁 = 𝐿] → 𝑁 ↑+ ϑ ↓ ε[𝑁 = 𝐿] ↭ 𝑀
AS-SVar

ω → 𝐿 =↘ 𝐿
AS-Infer-Type

ω → 𝑂 ! ϑ =↘ 𝐿

ω ⊋ ε[𝑁] → 𝑁 ↑+ 𝑂 ! ϑ ↓ ε[𝑁 = 𝐿] ↭ 𝐿
As-Infs

ω → ↫↘ 𝑂 ↘ 𝐿 ω → ϑ =↘ 𝑀

ω → 𝑂 ! ϑ =↘ 𝐿 ≃ 𝑀
AS-Infer-Con

Invariants: (1) → ω ⊋ ε and → ω ⊋ ε↔ (2) ε ⇒ ε↔ (3) ω ⊋ ε ↬ ϑ (4) ω ⊋ ε ↬ 𝑀 (5) ω ⊋ ε↔ →closed 𝐿
Fig. 8. Rules for subtyping inference.

as environment extension (Fig. 11). Thirdly, polarity in subtyping checking implies the ground
property: in the positive mode, the supertype is ground, whereas in the negative mode the subtype
is ground (3). Finally, the inference result of subtyping inference is always ground (4).

An important distinction that plays a fundamental role in the subtyping rules is between closed
and open types. A closed type is a type where all matching variables have already been solved,
whereas an open type may contain unsolved variables. For instance consider the type 𝑁 ≃ 𝑁 . If
the subtyping environment contains an unsolved variable for 𝑁 (for instance, ε ⊜ 𝑁) then the
type is said to be open. In contrast, if the subtyping environment contains a solution (for instance,
ε ⊜ (𝑁 = Int)) then the type is said to be closed. All types are closed in output environments (5).

Subtyping inference rules. The rules for subtyping inference are presented in Fig. 8. In rule AS-
Empty, when the context is empty, and 𝐿 is a closed type, we use the input environment ε as
output, and compute the grounded result of 𝐿 as the inference result. Rule AS-Type applies when
the context is a ground type 𝑀. This case corresponds to traditional subtyping, and so we just
switch to subtyping checking. The inferred result is just 𝑀. In rule AS-↗L a universal type ↗𝑁 . 𝐿,
matches a term context 𝑂 ! ϑ. In the algorithm we simply introduce an unsolved matching
variable 𝑁 as a placeholder for the solution found later. Note that it is possible that no solution
is found. For instance, in the case that we have ↗𝑁 . Int ≃ Int, and the argument is 1. The rule
works in both cases: whether a solution is found or not and the notation 𝑁 =?𝑃 expresses these
two possibilities (either we get a solved or an unsolved variable). Rule AS-SVar applies when the
subtype is a solved matching variable. In this case we look up the solution in the environment and
compare it to the context. The last rule AS-Infs applies when the subtype is an unsolved matching
variable 𝑁 . The only possibility that we have to !nd a solution in this case is that we must have
inferable term arguments, and we must also have an output type (the context ending with a full
type). The auxiliary judgment ω → ϑ =↘ 𝐿 takes a context with inferable arguments and an output
type and computes a type 𝐿 that becomes the solution to 𝑁 .

Left-to-right inference. AS-Trm-C and AS-Trm-O are two interesting rules: the subtype is a
function type 𝐿 ≃ 𝑀, and we have a term context 𝑂 ! ϑ in the place of supertype. Although

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 11. Publication date: January 2026.

2) learn more information from the inference of arguments
11:18 Xu Xue, Chen Cui, Shengyi Jiang, and Bruno C. d. S. Oliveira

ω ⊋ ε → 𝐿 ↑+ ϑ ↓ ε↔ ↭ 𝑀 (Under ω and ε, type 𝐿 is the subtype of ϑ and outputs ε↔ and 𝑀.)
AS-Empty

ω ⊋ ε →closed 𝐿
ω ⊋ ε → 𝐿 ↑+ ↫ ↓ ε↭ [ε]𝐿

AS-Type
ω ⊋ ε → 𝐿 ↑+ 𝑀 ↓ ε↔

ω ⊋ ε → 𝐿 ↑+ 𝑀 ↓ ε↔ ↭ 𝑀

AS-↗L
ω ⊋ ε,𝑁 → 𝐿 ↑+ 𝑂 ! ϑ ↓ ε↔,𝑁 =?𝑃 ↭ 𝑀

ω ⊋ ε → ↗𝑁 . 𝐿 ↑+ 𝑂 ! ϑ ↓ ε↔ ↭ 𝑀

ω ⊋ ε →closed 𝐿 ω → [ε]𝐿 ↘ 𝑂 ↘ 𝐿↔ ω ⊋ ε → 𝑀 ↑+ ϑ ↓ ε↔ ↭ 𝑄

ω ⊋ ε → 𝐿 ≃ 𝑀 ↑+ 𝑂 ! ϑ ↓ ε↔ ↭ [ε]𝐿 ≃ 𝑄
AS-Trm-C

ω ⊋ ε →open 𝐿 ω → ↫↘ 𝑂 ↘ 𝑃 ω ⊋ ε → 𝑃 ↑⇐ 𝐿 ↓ ε↔ ω ⊋ ε↔ → 𝑀 ↑+ ϑ ↓ ε↔↔ ↭ 𝑄

ω ⊋ ε → 𝐿 ≃ 𝑀 ↑+ 𝑂 ! ϑ ↓ ε↔↔ ↭ 𝑃 ≃ 𝑄
AS-Trm-O

ω ⊋ ε[𝑁 = 𝐿] → 𝐿 ↑+ ϑ ↓ ε[𝑁 = 𝐿] ↭ 𝑀

ω ⊋ ε[𝑁 = 𝐿] → 𝑁 ↑+ ϑ ↓ ε[𝑁 = 𝐿] ↭ 𝑀
AS-SVar

ω → 𝐿 =↘ 𝐿
AS-Infer-Type

ω → 𝑂 ! ϑ =↘ 𝐿

ω ⊋ ε[𝑁] → 𝑁 ↑+ 𝑂 ! ϑ ↓ ε[𝑁 = 𝐿] ↭ 𝐿
As-Infs

ω → ↫↘ 𝑂 ↘ 𝐿 ω → ϑ =↘ 𝑀

ω → 𝑂 ! ϑ =↘ 𝐿 ≃ 𝑀
AS-Infer-Con

Invariants: (1) → ω ⊋ ε and → ω ⊋ ε↔ (2) ε ⇒ ε↔ (3) ω ⊋ ε ↬ ϑ (4) ω ⊋ ε ↬ 𝑀 (5) ω ⊋ ε↔ →closed 𝐿
Fig. 8. Rules for subtyping inference.

as environment extension (Fig. 11). Thirdly, polarity in subtyping checking implies the ground
property: in the positive mode, the supertype is ground, whereas in the negative mode the subtype
is ground (3). Finally, the inference result of subtyping inference is always ground (4).

An important distinction that plays a fundamental role in the subtyping rules is between closed
and open types. A closed type is a type where all matching variables have already been solved,
whereas an open type may contain unsolved variables. For instance consider the type 𝑁 ≃ 𝑁 . If
the subtyping environment contains an unsolved variable for 𝑁 (for instance, ε ⊜ 𝑁) then the
type is said to be open. In contrast, if the subtyping environment contains a solution (for instance,
ε ⊜ (𝑁 = Int)) then the type is said to be closed. All types are closed in output environments (5).

Subtyping inference rules. The rules for subtyping inference are presented in Fig. 8. In rule AS-
Empty, when the context is empty, and 𝐿 is a closed type, we use the input environment ε as
output, and compute the grounded result of 𝐿 as the inference result. Rule AS-Type applies when
the context is a ground type 𝑀. This case corresponds to traditional subtyping, and so we just
switch to subtyping checking. The inferred result is just 𝑀. In rule AS-↗L a universal type ↗𝑁 . 𝐿,
matches a term context 𝑂 ! ϑ. In the algorithm we simply introduce an unsolved matching
variable 𝑁 as a placeholder for the solution found later. Note that it is possible that no solution
is found. For instance, in the case that we have ↗𝑁 . Int ≃ Int, and the argument is 1. The rule
works in both cases: whether a solution is found or not and the notation 𝑁 =?𝑃 expresses these
two possibilities (either we get a solved or an unsolved variable). Rule AS-SVar applies when the
subtype is a solved matching variable. In this case we look up the solution in the environment and
compare it to the context. The last rule AS-Infs applies when the subtype is an unsolved matching
variable 𝑁 . The only possibility that we have to !nd a solution in this case is that we must have
inferable term arguments, and we must also have an output type (the context ending with a full
type). The auxiliary judgment ω → ϑ =↘ 𝐿 takes a context with inferable arguments and an output
type and computes a type 𝐿 that becomes the solution to 𝑁 .

Left-to-right inference. AS-Trm-C and AS-Trm-O are two interesting rules: the subtype is a
function type 𝐿 ≃ 𝑀, and we have a term context 𝑂 ! ϑ in the place of supertype. Although

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 11. Publication date: January 2026.

3) once information is enough, check arguments

Towards Algorithm: Input and Output Environments

19

ω → 𝐿 ↑ ε ↓ ω↔ ↭ 𝑀 (Under ϑ and ω, type 𝐿 is the subtype of ε and outputs ω↔ and 𝑀.)

ω → 𝐿 ↑ ↫ ↓ ω↭ 𝐿
AS-Empty

ω → 𝐿 ↑↗ 𝑀 ↓ ω↔

ω → 𝐿 ↑ 𝑀 ↓ ω↔ ↭ 𝑀
AS-Type

ω,↘ ↑ 𝑁 ↑ ≃ → 𝐿 ↑ 𝑂 ! ε ↓ ω↔,𝑃 ↑ 𝑁 ↑ 𝑄 ↭ 𝑀

ω → ⇐𝑁 . 𝐿 ↑ 𝑂 ! ε ↓ ω↔ ↭ [𝑃/𝑄/𝑁]𝑀
AS-⇐L

ω → 𝐿 ⇒ 𝑂 ⇒ 𝐿↔ ↓ ω↔ ω↔ → 𝑀 ↑ ε ↓ ω↔↔ ↭ 𝑄

ω → 𝐿 ⇑ 𝑀 ↑ 𝑂 ! ε ↓ ω↔↔ ↭ 𝐿↔ ⇑ 𝑄
AS-Trm

ω[𝐿 ↑ 𝑁 ↑ 𝑀] → 𝑀 ↑ ε ↓ ω↔ ↭ 𝑀

ω[𝐿 ↑ 𝑁 ↑ 𝑀] → 𝑁 ↑ ε ↓ ω↔ ↭ 𝑀
AS-SVar

4 In Meeting
Discuss about the consequence of adopting splitting over direct grounding. The cons of direct
grounding is to have a stronger invariant that the output environment should be the same. But
splitting won’t promise that (?), perhaps it can be since it’s closed and we know that. But what
about the principle in subtyping system?

Var
ϑ → id : ⇐𝑁 . 𝑁 ⇑ 𝑁

⇐L
ϑ → ⇐𝑁 . 𝑁 ⇑ 𝑁 ↑ Int ⇑ Int Sub

ϑ → id : Int ⇑ Int
Lit

ϑ → 1 : Int App
ϑ → id 1 : Int

Var
ϑ →↫ id : ⇐𝑁 . 𝑁 ⇑ 𝑁

⇐L
ϑ →↬↫ ⇐𝑁 . 𝑁 ⇑ 𝑁 ↑ Int ⇑ Int

Sub
ϑ →↬↫ id : Int ⇑ Int

Lit
ϑ →↫ 1 : Int App

ϑ →↫ id 1 : Int

Var
ϑ → ↫⇒ id ⇒ ⇐𝑁 . 𝑁 ⇑ 𝑁

· · ·
ϑ ⊋ 𝑁 → 𝑁 ⇑ 𝑁 ↑ 1 ! ↫ ↓ 𝑁 = Int↭ Int ⇑ Int

⇐L
ϑ → ⇐𝑁 . 𝑁 ⇑ 𝑁 ↑ 1 ! ↫ ↭ Int ⇑ Int

Sub
ϑ → 1 ! ↫⇒ id ⇒ Int ⇑ Int

App
ϑ → ↫⇒ id 1 ⇒ Int

3

Recap: Local Contextual Type Inference

20

11:18 Xu Xue, Chen Cui, Shengyi Jiang, and Bruno C. d. S. Oliveira

ω ⊋ ε → 𝐿 ↑+ ϑ ↓ ε↔ ↭ 𝑀 (Under ω and ε, type 𝐿 is the subtype of ϑ and outputs ε↔ and 𝑀.)
AS-Empty

ω ⊋ ε →closed 𝐿
ω ⊋ ε → 𝐿 ↑+ ↫ ↓ ε↭ [ε]𝐿

AS-Type
ω ⊋ ε → 𝐿 ↑+ 𝑀 ↓ ε↔

ω ⊋ ε → 𝐿 ↑+ 𝑀 ↓ ε↔ ↭ 𝑀

AS-↗L
ω ⊋ ε,𝑁 → 𝐿 ↑+ 𝑂 ! ϑ ↓ ε↔,𝑁 =?𝑃 ↭ 𝑀

ω ⊋ ε → ↗𝑁 . 𝐿 ↑+ 𝑂 ! ϑ ↓ ε↔ ↭ 𝑀

ω ⊋ ε →closed 𝐿 ω → [ε]𝐿 ↘ 𝑂 ↘ 𝐿↔ ω ⊋ ε → 𝑀 ↑+ ϑ ↓ ε↔ ↭ 𝑄

ω ⊋ ε → 𝐿 ≃ 𝑀 ↑+ 𝑂 ! ϑ ↓ ε↔ ↭ [ε]𝐿 ≃ 𝑄
AS-Trm-C

ω ⊋ ε →open 𝐿 ω → ↫↘ 𝑂 ↘ 𝑃 ω ⊋ ε → 𝑃 ↑⇐ 𝐿 ↓ ε↔ ω ⊋ ε↔ → 𝑀 ↑+ ϑ ↓ ε↔↔ ↭ 𝑄

ω ⊋ ε → 𝐿 ≃ 𝑀 ↑+ 𝑂 ! ϑ ↓ ε↔↔ ↭ 𝑃 ≃ 𝑄
AS-Trm-O

ω ⊋ ε[𝑁 = 𝐿] → 𝐿 ↑+ ϑ ↓ ε[𝑁 = 𝐿] ↭ 𝑀

ω ⊋ ε[𝑁 = 𝐿] → 𝑁 ↑+ ϑ ↓ ε[𝑁 = 𝐿] ↭ 𝑀
AS-SVar

ω → 𝐿 =↘ 𝐿
AS-Infer-Type

ω → 𝑂 ! ϑ =↘ 𝐿

ω ⊋ ε[𝑁] → 𝑁 ↑+ 𝑂 ! ϑ ↓ ε[𝑁 = 𝐿] ↭ 𝐿
As-Infs

ω → ↫↘ 𝑂 ↘ 𝐿 ω → ϑ =↘ 𝑀

ω → 𝑂 ! ϑ =↘ 𝐿 ≃ 𝑀
AS-Infer-Con

Invariants: (1) → ω ⊋ ε and → ω ⊋ ε↔ (2) ε ⇒ ε↔ (3) ω ⊋ ε ↬ ϑ (4) ω ⊋ ε ↬ 𝑀 (5) ω ⊋ ε↔ →closed 𝐿
Fig. 8. Rules for subtyping inference.

as environment extension (Fig. 11). Thirdly, polarity in subtyping checking implies the ground
property: in the positive mode, the supertype is ground, whereas in the negative mode the subtype
is ground (3). Finally, the inference result of subtyping inference is always ground (4).

An important distinction that plays a fundamental role in the subtyping rules is between closed
and open types. A closed type is a type where all matching variables have already been solved,
whereas an open type may contain unsolved variables. For instance consider the type 𝑁 ≃ 𝑁 . If
the subtyping environment contains an unsolved variable for 𝑁 (for instance, ε ⊜ 𝑁) then the
type is said to be open. In contrast, if the subtyping environment contains a solution (for instance,
ε ⊜ (𝑁 = Int)) then the type is said to be closed. All types are closed in output environments (5).

Subtyping inference rules. The rules for subtyping inference are presented in Fig. 8. In rule AS-
Empty, when the context is empty, and 𝐿 is a closed type, we use the input environment ε as
output, and compute the grounded result of 𝐿 as the inference result. Rule AS-Type applies when
the context is a ground type 𝑀. This case corresponds to traditional subtyping, and so we just
switch to subtyping checking. The inferred result is just 𝑀. In rule AS-↗L a universal type ↗𝑁 . 𝐿,
matches a term context 𝑂 ! ϑ. In the algorithm we simply introduce an unsolved matching
variable 𝑁 as a placeholder for the solution found later. Note that it is possible that no solution
is found. For instance, in the case that we have ↗𝑁 . Int ≃ Int, and the argument is 1. The rule
works in both cases: whether a solution is found or not and the notation 𝑁 =?𝑃 expresses these
two possibilities (either we get a solved or an unsolved variable). Rule AS-SVar applies when the
subtype is a solved matching variable. In this case we look up the solution in the environment and
compare it to the context. The last rule AS-Infs applies when the subtype is an unsolved matching
variable 𝑁 . The only possibility that we have to !nd a solution in this case is that we must have
inferable term arguments, and we must also have an output type (the context ending with a full
type). The auxiliary judgment ω → ϑ =↘ 𝐿 takes a context with inferable arguments and an output
type and computes a type 𝐿 that becomes the solution to 𝑁 .

Left-to-right inference. AS-Trm-C and AS-Trm-O are two interesting rules: the subtype is a
function type 𝐿 ≃ 𝑀, and we have a term context 𝑂 ! ϑ in the place of supertype. Although

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 11. Publication date: January 2026.

11:10 Xu Xue, Chen Cui, Shengyi Jiang, and Bruno C. d. S. Oliveira

ω →𝐿 𝐿 ↑ 𝑀 (Under ω, type 𝐿 is a subtype of 𝑀 and𝑁 contextual information is known for 𝑀.)

ω →↭ 𝐿 ↑ 𝐿
DS-Refl

ω →↫ Int ↑ Int
DS-Int

ω →↫ 𝑂 ↑ 𝑂
DS-Var

ω,𝑂 →↫ 𝐿 ↑ 𝑀

ω →↫ ↓𝑂 . 𝐿 ↑ ↓𝑂 . 𝑀
DS-↓

ω →↫ 𝑃 ↑ 𝐿 ω →𝐿 ↔↗ 𝑀 ↑ 𝑄

ω →𝐿 𝐿 ↘ 𝑀 ↑ 𝑃 ↘ 𝑄
DS-Arr

ω → 𝑀 𝐿𝑀
(𝑁 𝐿) ω →(𝑁 𝐿) [𝑀/𝑂]𝐿 ↑ 𝑃 ↘ 𝑄

ω →(𝑁 𝐿) ↓𝑂 . 𝐿 ↑ 𝑃 ↘ 𝑄
DS-↓L

𝐿𝑀
↭ = 𝑂 ω FV(𝐿) (1)

𝐿𝑀
↫ = true (2)

𝑂𝑀
↫̃ = true (3)

(𝐿 ↘ 𝑀)𝑀(↫ 𝐿) = 𝑂 ≃ FV(𝐿) (4)
(𝐿 ↘ 𝑀)𝑀(𝑁 𝐿) = 𝑂 ω FV(𝐿) ⇐ 𝑀𝑀

𝐿 (5)
(↓𝑅 . 𝐿)𝑀(𝑁 𝐿) = 𝐿𝑀

(𝑁 𝐿) (6)

Fig. 3. Declarative subtyping rules and instantiability.

rule relates the type of id (↓𝑂 . 𝑂 ↘ 𝑂) to its instantiated type ((↓𝑂 . 𝑂 ↘ 𝑂) ↘ Int ↘ Int). The
subtyping derivation and instantiation details are discussed in the next.

3.2 Contextual Subtyping
The contextual subtyping rules are shown in Fig. 3. The mask indicates how much contextual
information is available for the supertype. The mask ↫ means we have full information about the
supertype, leading to traditional subtyping. Rules DS-Int, DS-Var and DS-↓ all use the ↫ mask.
Because we are modeling System F, all subtyping checks with a ↫mask imply syntactic equivalence
checks. The ↫𝑁 mask means that the !rst input type of the supertype is known to be available in
the context, and it can be used for instantiating polymorphic functions and performing subtyping
checks. For function types (rule DS-Arr), we decrease the mask ((a m) ↔↗ = m and ↫ ↔↗ = ↫), and do
contravariant checks of input types and covariant checks of output types.

Instantiation rule. The DS-↓L rule is key to the implicit instantiation of polymorphic types. A
polymorphic type is a subtype of a function type if its type argument 𝑂 appears in known parts of
contextual information, characterized as instantiability. We guess the type 𝑀, and then check that
the substituted result [𝑀/𝑂]𝐿 is a subtype of function type 𝑃 ↘ 𝑄 . Keen readers may notice that
the mask is 𝑆 𝑁 in rule DS-↓L. This means that we have arguments in the context, and instantiation
can only happen in function application. Moreover, the mask 𝑆 𝑁 explains why the supertype is
a function type: since we are in the context of an application, we expect the supertype to be a
function type. Therefore, the formulation of rule DS-↓L nicely expresses the observation about
local type inference that implicit instantiations can only be triggered by applications.

Instantiability. The instantiability restriction 𝐿𝑀
𝐿 that appears in rule DS-↓L determines when

solutions for 𝑂 can be found. It can be read as “𝑂 is instantiable in type 𝐿 with 𝑁 contextual
information”. We present its rules in Fig. 3. Our instantiability judgment uses the mask as a
condition to indicate the known parts of types. Essentially instantiability covers three cases:
• Type variable 𝑂 does not appear in type 𝐿. In this case, there is no need to !nd a solution for the
instantiation; for example, consider ↓𝑂 . Int ↘ Int. This case can be handled by (1) and (2).

• Type variable 𝑂 appears in known output types. For example, in f : ↓𝑂 . Int ↘ 𝑂 ↘ 𝑂 → (f 1) :
Int ↘ Int, the mask for f is ↫↫, indicating that 𝑂 ↘ 𝑂 is in the known part of the type. By
further checking the occurrence of 𝑂 in 𝑂 ↘ 𝑂 we can guess the solution for 𝑂 , handled by (2).
Rule (3) deals with the case where a variable 𝑂 covers multiple known positions. For example,
in f : ↓𝑂 . 𝑂 → (f 1) : Int, we know both the input and output types of f, from arguments and
annotations, we can instantiate 𝑂 with Int ↘ Int to accept this example. We allow this by de!ning

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 11. Publication date: January 2026.

ω → 𝐿 ↑ ε ↓ ω↔ ↭ 𝑀 (Under ϑ and ω, type 𝐿 is the subtype of ε and outputs ω↔ and 𝑀.)

ω → 𝐿 ↑ ↫ ↓ ω↭ 𝐿
AS-Empty

ω → 𝐿 ↑↗ 𝑀 ↓ ω↔

ω → 𝐿 ↑ 𝑀 ↓ ω↔ ↭ 𝑀
AS-Type

ω,↘ ↑ 𝑁 ↑ ≃ → 𝐿 ↑ 𝑂 ! ε ↓ ω↔,𝑃 ↑ 𝑁 ↑ 𝑄 ↭ 𝑀

ω → ⇐𝑁 . 𝐿 ↑ 𝑂 ! ε ↓ ω↔ ↭ [𝑃/𝑄/𝑁]𝑀
AS-⇐L

ω → 𝐿 ⇒ 𝑂 ⇒ 𝐿↔ ↓ ω↔ ω↔ → 𝑀 ↑ ε ↓ ω↔↔ ↭ 𝑄

ω → 𝐿 ⇑ 𝑀 ↑ 𝑂 ! ε ↓ ω↔↔ ↭ 𝐿↔ ⇑ 𝑄
AS-Trm

ω[𝐿 ↑ 𝑁 ↑ 𝑀] → 𝑀 ↑ ε ↓ ω↔ ↭ 𝑀

ω[𝐿 ↑ 𝑁 ↑ 𝑀] → 𝑁 ↑ ε ↓ ω↔ ↭ 𝑀
AS-SVar

4 In Meeting
Discuss about the consequence of adopting splitting over direct grounding. The cons of direct
grounding is to have a stronger invariant that the output environment should be the same. But
splitting won’t promise that (?), perhaps it can be since it’s closed and we know that. But what
about the principle in subtyping system?

Var
ϑ → id : ⇐𝑁 . 𝑁 ⇑ 𝑁

⇐L
ϑ → ⇐𝑁 . 𝑁 ⇑ 𝑁 ↑ Int ⇑ Int Sub

ϑ → id : Int ⇑ Int
Lit

ϑ → 1 : Int App
ϑ → id 1 : Int

Var
ϑ →↫ id : ⇐𝑁 . 𝑁 ⇑ 𝑁

⇐L
ϑ →↬↫ ⇐𝑁 . 𝑁 ⇑ 𝑁 ↑ Int ⇑ Int

Sub
ϑ →↬↫ id : Int ⇑ Int

Lit
ϑ →↫ 1 : Int App

ϑ →↫ id 1 : Int

Var
ϑ → ↫⇒ id ⇒ ⇐𝑁 . 𝑁 ⇑ 𝑁

· · ·
ϑ ⊋ 𝑁 → 𝑁 ⇑ 𝑁 ↑ 1 ! ↫ ↓ 𝑁 = Int↭ Int ⇑ Int

⇐L
ϑ → ⇐𝑁 . 𝑁 ⇑ 𝑁 ↑ 1 ! ↫ ↭ Int ⇑ Int

Sub
ϑ → 1 ! ↫⇒ id ⇒ Int ⇑ Int

App
ϑ → ↫⇒ id 1 ⇒ Int

ϑ ⊋ ω →𝐿 𝐿 ↑ 𝑀

3

Conclusion

21

• LCTI: offering a simple and modular specification of LTI

• Matching Subtyping: specify the use of matching in constraint solving

• Contextual System F: soundness & completeness across three systems

• Everything at https://github.com/juniorxxue/LCTI

• Mechanized proofs, Haskell prototype and extended paper

https://github.com/juniorxxue/LCTI

