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• New languages are prototyped by a small/core calculus;
• New features are often studied in an isolated environment;

And...

• Features are not orthogonal;
• Languages are not designed at once.
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• retains simplicity;
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Intersection Types is a nice fit

“our goal is to use intersections and unions as general mechanisms for encoding language
features, so we really should do it in full generality, or not at all..."1

1Jana Dunfield. “Elaborating intersection and union types”. In: Journal of Functional Programming 24.2-3 (2014),
pp. 133–165.
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Intersection Types

• A term e having the type A& B means e has both A and B.

• Originally introduced by Coppo et al.2, it allows λx. x x to be typed ((A → B)& A) → B.
• In languages like TypeScript, the intersection types are explicitly inhabitated.

interface Name { name: string; }
interface ID { id: number; }
type Person = Name & ID
let e : Person = { id: 42, name: 'Alice'};

2Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. “Functional characters of solvable terms”. In:
Mathematical Logic Quarterly 27.2-6 (1981), pp. 45–58.
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Merge Operator4

• e1, , e2 means it can be used as e1 or e2.

• Force intersection types to be explicitly introduced and inhabitated.
• Typing for merge is 3

T-Mrg
Γ ⊢ e1 ⇒ A Γ ⊢ e2 ⇒ B

Γ ⊢ e1 , , e2 ⇒ A& B

• Merge operator adds expressive power and enables many applications.

3Bidirectional typing, Γ ⊢ e ⇔ A, and⇔::=⇐|⇒. ⇐ is to check;⇒ is to infer.
4Jana Dunfield. “Elaborating intersection and union types”. In: Journal of Functional Programming 24.2-3 (2014),

pp. 133–165.
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Extensible Records5

• Records can be represented by syntactic sugar of merge operator.
• {x = e1, y = e2, z = e3} can be viewed as {x = e1}, , {y = e2}, , {z = e3}.

• Record width subtyping for free.

{li : Ti}
i=1..n..n+k <: {li : Ti}

1..n

is subsumed by

{l1 : A}& {l2 : B} <: {l1 : A}

is subsumed by

A& B <: A

5Luca Cardelli and John C Mitchell. “Operations on records”. In: Mathematical structures in computer science 1.1 (1991),
pp. 3–48.
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Record Projection

• Record Projection is standard.

({x = e1}, , {y = e2}).x ↪→ e1

({x = e1}, , {y = e2}).y ↪→ e2

• Record Concatenation is simply merging.

({x = e1}, , {y = e2}), , {z = e3}
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Overloaded Functions6

• Function implementation varies depending on the types of arguments.

• Consider Haskell’s show function.
show :: Show a => a -> String
instance Show Int where

show = showInt
instance Show Bool where

show = showBool
-- instance will be selected according to the argument type
show 1 ↪→ showInt 1 ↪→ "1"
show true ↪→ showBool true ↪→ "true"

• show can be defined as showInt„showBool

6Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. “A calculus for overloaded functions with subtyping”. In:
Information and Computation 117.1 (1995), pp. 115–135.
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Overloaded Application

• Overloaded Application is standard.
show : (Int -> String) & (Bool -> String)
show = showInt,,showBool
show 1 ↪→ showInt 1 ↪→ "1"
show true ↪→ showBool true ↪→ "true"

• Adding overloading instances is simply by merging.
newShow = show,,showDouble
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Return type Overloading7

• Function implementation varies depending on the surrounding contexts.

• Consider Haskell’s read function
read :: Read a => String -> a
instance Read Int where

read = readInt
instance Read Bool where

read = readBool
-- instance will be selected according to surrounding contexts
succ (read "1") ↪→ succ (readInt "1") ↪→ 2
not (read "true") ↪→ succ (readBool "1") ↪→ false

• Calculi with merge operator can do in a similar way.
read = readInt,,readBool

7Koar Marntirosian et al. “Resolution as Intersection Subtyping via Modus Ponens”. In: Proc. ACM Program. Lang.
4.OOPSLA (2020).
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Nested Composition8

• It reflects distributivity of intersection types at the term level.

{l : A}& {l : B} <: {l : A& B} S-Distri-Rcd

(A → B)& (A → C) <: A → (B& C) S-Distri-Arr

• Results extracted from nested terms will be composed when eliminating terms created by
the merge operator.

8Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers. “The essence of nested composition”. In: 32nd European
Conference on Object-Oriented Programming (ECOOP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2018.
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Nested Composition via Projection and Application

• For records
({x = e1}, , {x = e2}).x ↪→ e1, , e2

• For overloaded functions

f : Int → Int → Int
g : Int → Bool → Bool
(f , , g) 1 ↪→ (f 1), , (g 1)

• Both cases are "unnatural"
since we allow repeated labels and ambiguous overloaded application.
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Goodness of Nested Composition

• [Nested record composition] Key feature of Compositional Programming9.
◦ solves the Expression Problem naturally.
◦ models forms of family polymorphism.

• [Nested function composition] It enables first-class curried overloaded functions.
◦ overloaded functions are default curried;
◦ we can abstract and return overloaded functions in a flexible way;
◦ it’s a novel and interesting finding in this work.

9Weixin Zhang, Yaozhu Sun, and Bruno C. d. S. Oliveira. “Compositional Programming”. In: ACM Transactions on
Programming Languages and Systems (TOPLAS) 43.3 (2021), pp. 1–61.
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Challenges in Type Inference

In traditional calculi, we have the following typing rule for application:

Γ ⊢ e1 ⇒ A → B Γ ⊢ e2 ⇐ A
Γ ⊢ e1 e2 ⇒ B

T-App

This does not apply to case show 1, where

Γ ⊢ show ⇒ A& B Γ ⊢ 1 ⇐ ?

Γ ⊢ show 1 ⇒ ?
T-App
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Challenges in Type Inference

A direct method is to:
1. assume we have the argument type A;
2. assume the type of function to be a intersection of function types:

(A1 → B1)& (A2 → B2)& ...&(An → Bn)

3. then iterate intersection types by comparing the argument type A and input type Ai;
4. compose the outputs as the result type
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Challenges in Dynamic Semantics

A direct method is to:
1. assume the overloaded function to be a merge of functions,

2. then select correct instances according to the types.
◦ call-by-value strategy
◦ type-dependent semantics
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Distributivity Breaks the Assumptions

pshow : Unit -> (Int -> String) & (Bool -> String)
pshow = λx. show
pshow unit 1 ↪→ "1"
pshow unit true ↪→ "true"

• pshow is not a merge of functions (wrapped in a lambda);
• its type is not a intersection of function types;
• it’s still treated as an overloaded function.
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Re-interpret Subtyping

We can have two interpretations of A <: B → C:
• Suppose A, B and C are given, we tell whether the subtyping holds.

(Int → String)& (Bool → String) <: Int → String

• Suppose A and B are given, we infer the result type C10.

(Int → String)& (Bool → String) <: Int → ?

10which is also the type of overloaded application.
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Applicative Subtyping

A ≪ S is a specialized subtyping used to infer the type of applications and projections 11.

A1 → A2 ≪ B = A2 when B <: A1 (1)
A1 → A2 ≪ B = . when¬(B <: A1) (2)
{l = A} ≪ l = A (3)
{l1 = A} ≪ l2 = . when l1 ̸= l2 (4)
A1 & A2 ≪ S = (A1 ≪ S)⊚ (A2 ≪ S) (5)

A ≪ S = . otherwise (6)

11S ::= A | l, Selector S is either type A or label l
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Examples of Applicative Subtyping

show 1

(Int → String)& (Bool → String) ≪ Int
by (5) ↪→ (Int → String) ≪ Int ⊚ (Bool → String) ≪ Int

by (1) (2) ↪→ String ⊚ .

read "1"

(String → Int)& (String → Bool) ≪ String
by (5) ↪→ (String → Int) ≪ String ⊚ (String → Bool) ≪ String
by (1) ↪→ Int ⊚ Bool
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Composition Operators

One version that implements nested composition semantics 12.

.⊚ . = .

A1 ⊚ . = A1

.⊚ A2 = A2

A1 ⊚ A2 = A1 & A2

12We have another version of the operator which models the overloading semantics
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Examples (applying nested composition semantics)

(Int → String)& (Bool → String) ≪ Int = String
(String → Int)& (String → Bool) ≪ String = Int& Bool

{x : String}& {y : String} ≪ y = String
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Let arguments go "together"

We infer both the type of function (merges) and argument together and then compute.

Γ ⊢ e1 ⇒ A Γ ⊢ e2 ⇒ B A ≪ B = C
Γ ⊢ e1 e2 ⇒ C

T-App



27

Introduction Applications of Merge Operator Calculi Design Implementation Conslusion

Examples (applying nested composition semantics)

We assume Γ is f : I → I → I, g : I → B → B. 13

Γ ⊢ (f , , g) ⇒ (I → I → I)& (I → B → B) Γ ⊢ 2 ⇒ I

Γ ⊢ (f , , g) 2 ⇒ (I → I)& (B → B)
T-App

Γ ⊢ true ⇒ B
Γ ⊢ (f , , g) 2 true ⇒ B

T-App

1. f , , g
2. (f , , g) 2
3. (f , , g) 2 true

13I stands for Int, B stands for Bool.
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Metatheory

(Int → String)& (Bool → String) ≪ Int = String
(String → Int)& (String → Bool) ≪ String = Int& Bool

{x : String}& {y : String} ≪ y = String

(Int → String)& (Bool → String) <: Int → String
(String → Int)& (String → Bool) <: String → Int& Bool

{x : String}& {y : String} <: {y : String}
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Metatheory

Lemma (Soundness (Function))
If A ≪ B = C, then A <: B → C.

Lemma (Completeness (Function))
If A <: B → C, then∃D, A ≪ B = D ∧ D <: C.
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Calculi Syntax

Expressions e ::= x | i | e : A | e1 e2 | λx .e : A → B | e1, , e2 | {l = e} | e.l
Raw Values p ::= i | λx .e : A → B

Values v ::= p : Ao | v1, , v2 | {l = v}

Contexts Γ ::= · | Γ, x : A

• Values carry extra annotations as runtime types;
• The dispatching is based on runtime types;
• The restriction on runtime types settles a canonical form of overloaded functions.
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Operational Semantics

Step-App
(v1 • v2) ↪→ e

v1 v2 7−→ e

Step-Prj
(v • l) ↪→ v ′

v.l 7−→ v ′
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Applicative Dispatching 14

(v • vl) ↪→ e (Applicative Dispatching)

App-Lam
v 7−→A v ′

((λx. e : A → B) : C → D • v) ↪→ e[x 7→ v ′] : D

App-Proj

({l = v} • l) ↪→ v

App-Mrg-L
⟨v2⟩ ≪ ⟨vl⟩ = . (v1 • vl) ↪→ e

((v1 , , v2) • vl) ↪→ e

App-Mrg-R
⟨v1⟩ ≪ ⟨vl⟩ = . (v2 • vl) ↪→ e

((v1 , , v2) • vl) ↪→ e

App-Mrg-P
⟨v1⟩ ≪ ⟨vl⟩ ≠ . ⟨v2⟩ ≪ ⟨vl⟩ ≠ . (v1 • vl) ↪→ e1 (v2 • vl) ↪→ e2

((v1 , , v2) • vl) ↪→ e1 , , e2

14⟨v⟩ extracts the runtime type of v
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Type Soundness and Determinism15

Theorem (Preservation)
If · ⊢ e ⇔ A and e 7−→ e ′, then · ⊢ e ′ ⇐ A.

Theorem (Progress)
If · ⊢ e ⇔ A, then e is a value or∃e ′, e 7−→ e ′.

Theorem (Determinism)
If e is well-typed, e 7−→ e1 and e 7−→ e2, then e1 = e2.

15held only in calculus with disjointness
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Interpreter Implementation

• Statically typed;
• A dialect of Lisp;
• 382 Lines of Racket Code:

◦ S-expression parsing included;
◦ Contract-based runtime check;
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Language Tour (1/3)

;; simple literals
42 42.2 #t #f

;; lambda abstraction
(λ (x : int) x int)

;; function application
((λ (x : int) x int) 1)
;; => (: 1 int)

;; annotate a "value" can force a downcast/upcast
(: (: 1 int)

(& int int)) ;; => duplicate a number
;; => (m (: 1 int) (: 1 int))
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Language Tour (2/3)

;; merge two values
(m 1 #t)

;; merge two functions
(m (λ (x : int) x int)

(λ (x : bool) x bool))

;; merged function can be applied
((m (λ (x : int) x int)

(λ (x : bool) x bool))
1)

;; => (: 1 int)
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Language Tour (3/3)

;; use int+ to add integers
(int+ 1 3)

;; use flo+ to add floats
(flo+ 1.0 2.1)

;; overload int+ and flo+ to create a polymorphic "double" function
((m (λ (x : int) (int+ x x) int)

(λ (x : float) (flo+ x x) float))
1)

;; => (: 2 int)
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Conlusion

• Applicative Subtyping & Applicative Dispatching
◦ Three Variants of Subtyping
◦ Sound/Complete Lemmas

• Formalisation of Two Calculi Design
◦ Type Sound Calculus with an Unrestricted Merge Operator
◦ Deterministic Calculus with a Disjoint Merge Operator

• Coq Formalisation & Interpreter Implementation
◦ https://github.com/juniorxxue/applicative-intersection

https://github.com/juniorxxue/applicative-intersection
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Future Work

• Application Mode
◦ Alternative to Applicative Subtyping;

• Bidirectional Typing
◦ Recover the advantage of check-mode;

• “Best-Match" Evaluation Strategy
• Compile to Racket

◦ Static Type Checking and Resolution using Macro System
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