INTRODUCTION 0000000 Applications of Merge Operator 00000000 CALCULI DESIGN

Implementation 0000 Conslusion 00

1

Applicative Intersection Types

January 10, 2023

Xu Xue (MPhil Candidate)

The University of Hong Kong

Calculi Design

The Trend is ...

New languages keep being invented!

The Trend is ...

New languages keep being invented!

credit: pldb.com

Calculi Design

The Trend is ...

New features keep being discovered!

The Trend is ...

New features keep being discovered!

The Problem is ...

- New languages are prototyped by a small/core calculus;
- New features are often studied in an isolated environment;

And...

The Problem is ...

- New languages are prototyped by a small/core calculus;
- New features are often studied in an isolated environment;

And...

- Features are not orthogonal;
- Languages are not designed at once.

A general framework

- contains wide features;
- retains simplicity;
- has extensibility;
- and enjoys good properties,

A general framework

- contains wide features;
- retains simplicity;
- has extensibility;
- and enjoys good properties,

is desired by language designers and implementors.

Calculi Design

Intersection Types is a nice fit

"our goal is to use **intersections** and unions as general mechanisms for encoding language features, so we really should do it in full generality, or not at all..."¹

¹Jana Dunfield. "Elaborating intersection and union types". In: *Journal of Functional Programming* 24.2-3 (2014), pp. 133–165.

Intersection Types

• A term *e* having the type A & B means *e* has both A and B.

²Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. "Functional characters of solvable terms". In: Mathematical Logic Quarterly 27.2-6 (1981), pp. 45–58.

Intersection Types

- A term *e* having the type A & B means *e* has both A and B.
- Originally introduced by Coppo et al.², it allows $\lambda x. x x$ to be typed $((A \rightarrow B) \& A) \rightarrow B$.

²Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. "Functional characters of solvable terms". In: Mathematical Logic Quarterly 27.2-6 (1981), pp. 45–58.

Intersection Types

- A term *e* having the type A & B means *e* has both A and B.
- Originally introduced by Coppo et al.², it allows $\lambda x. x x$ to be typed $((A \rightarrow B) \& A) \rightarrow B$.
- In languages like TypeScript, the intersection types are explicitly inhabitated.

```
interface Name { name: string; }
interface ID { id: number; }
type Person = Name & ID
let e : Person = { id: 42, name: 'Alice'};
```

²Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. "Functional characters of solvable terms". In: Mathematical Logic Quarterly 27.2-6 (1981), pp. 45–58.

Merge Operator⁴

• e_1 , e_2 means it can be used as e_1 or e_2 .

⁴Jana Dunfield. "Elaborating intersection and union types". In: *Journal of Functional Programming* 24.2-3 (2014), pp. 133–165.

³Bidirectional typing, $\Gamma \vdash e \Leftrightarrow A$, and $\Leftrightarrow ::= \Leftarrow | \Rightarrow$. \Leftarrow is to check; \Rightarrow is to infer.

Merge Operator⁴

- e_1 , e_2 means it can be used as e_1 or e_2 .
- Force intersection types to be *explicitly* introduced and inhabitated.
- Typing for merge is ³

 $\frac{\Gamma \text{-}\mathsf{Mrg}}{\Gamma \vdash e_1 \Rightarrow A} \frac{\Gamma \vdash e_2 \Rightarrow B}{\Gamma \vdash e_1 \,, \, e_2 \Rightarrow A \& B}$

³Bidirectional typing, $\Gamma \vdash e \Leftrightarrow A$, and $\Leftrightarrow ::= \Leftarrow | \Rightarrow$. \Leftarrow is to check; \Rightarrow is to infer.

⁴Jana Dunfield. "Elaborating intersection and union types". In: *Journal of Functional Programming* 24.2-3 (2014), pp. 133–165.

Merge Operator⁴

- e_1 , e_2 means it can be used as e_1 or e_2 .
- Force intersection types to be *explicitly* introduced and inhabitated.
- Typing for merge is ³

 $\frac{\Gamma \text{-}\mathsf{Mrg}}{\Gamma \vdash e_1 \Rightarrow A} \quad \frac{\Gamma \vdash e_2 \Rightarrow B}{\Gamma \vdash e_1 \,, \, e_2 \Rightarrow A \& B}$

• Merge operator adds expressive power and enables many applications.

⁴Jana Dunfield. "Elaborating intersection and union types". In: *Journal of Functional Programming* 24.2-3 (2014), pp. 133–165.

³Bidirectional typing, $\Gamma \vdash e \Leftrightarrow A$, and $\Leftrightarrow ::= \Leftarrow \models . \Leftarrow$ is to check; \Rightarrow is to infer.

0000000	●0000000	000000000000000000000000000000000000000	0000	00	
Eutomailele Deseudes					

Extensible Records⁵

- Records can be represented by *syntactic sugar of merge operator*.
- $\{x = e_1, y = e_2, z = e_3\}$ can be viewed as $\{x = e_1\}, \{y = e_2\}, \{z = e_3\}$.

9

⁵Luca Cardelli and John C Mitchell. "Operations on records". In: *Mathematical structures in computer science* 1.1 (1991), pp. 3–48.

Extensible Records⁵

- Records can be represented by *syntactic sugar of merge operator*.
- $\{x = e_1, y = e_2, z = e_3\}$ can be viewed as $\{x = e_1\}, \{y = e_2\}, \{z = e_3\}$.
- Record width subtyping for free.

$$\{I_i:T_i\}^{i=1..n..n+k} <: \{I_i:T_i\}^{1..n}$$

is subsumed by

$$\{I_1:A\} \& \{I_2:B\} <: \{I_1:A\}$$

is subsumed by

A & B <: A

⁵Luca Cardelli and John C Mitchell. "Operations on records". In: *Mathematical structures in computer science* 1.1 (1991), pp. 3–48.

Record Projection

• Record Projection is standard.

$$(\{x = e_1\}, \{y = e_2\}).x \hookrightarrow e_1$$

$$(\{x = e_1\}, \{y = e_2\}).y \hookrightarrow e_2$$

• Record Concatenation is simply merging.

$$(\{x = e_1\}, \{y = e_2\}), \{z = e_3\}$$

11

Overloaded Functions⁶

• Function implementation varies depending on the types of arguments.

⁶Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. "A calculus for overloaded functions with subtyping". In: Information and Computation 117.1 (1995), pp. 115–135.

Overloaded Functions⁶

- Function implementation varies depending on the types of arguments.
- Consider Haskell's show function.

```
show :: Show a => a -> String
instance Show Int where
show = showInt
instance Show Bool where
show = showBool
-- instance will be selected according to the argument type
show 1 → showInt 1 → "1"
show true → showBool true → "true"
```

• show can be defined as showInt,,showBool

⁶Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. "A calculus for overloaded functions with subtyping". In: Information and Computation 117.1 (1995), pp. 115–135.

Overloaded Application

• Overloaded Application is standard.

```
show : (Int -> String) & (Bool -> String)
show = showInt,, showBool
show 1 \hookrightarrow showInt 1 \hookrightarrow "1"
show true \hookrightarrow showBool true \hookrightarrow "true"
```

Adding overloading instances is simply by merging.
 newShow = show,, showDouble

Return type Overloading⁷

• Function implementation varies depending on the surrounding contexts.

⁷Koar Marntirosian et al. "Resolution as Intersection Subtyping via Modus Ponens". In: *Proc. ACM Program. Lang.* 4.00PSLA (2020).

Return type Overloading⁷

- Function implementation varies depending on the surrounding contexts.
- Consider Haskell's read function

```
read :: Read a => String -> a
instance Read Int where
read = readInt
instance Read Bool where
read = readBool
-- instance will be selected according to surrounding contexts
succ (read "1") → succ (readInt "1") → 2
not (read "true") → succ (readBool "1") → false
```

⁷Koar Marntirosian et al. "Resolution as Intersection Subtyping via Modus Ponens". In: *Proc. ACM Program. Lang.* 4.00PSLA (2020).

Return type Overloading⁷

- Function implementation varies depending on the surrounding contexts.
- Consider Haskell's read function

```
read :: Read a => String -> a
instance Read Int where
read = readInt
instance Read Bool where
read = readBool
-- instance will be selected according to surrounding contexts
succ (read "1") ↔ succ (readInt "1") ↔ 2
not (read "true") ↔ succ (readBool "1") ↔ false
```

• Calculi with merge operator can do in a similar way.

```
read = readInt,,readBool
```

⁷Koar Marntirosian et al. "Resolution as Intersection Subtyping via Modus Ponens". In: *Proc. ACM Program. Lang.* 4.00PSLA (2020).

Nested Composition⁸

• It reflects *distributivity* of intersection types at the term level.

 $\{l:A\}\,\&\,\{l:B\}<:\{l:A\,\&\,B\}\,\text{S-Distri-Rcd}$

$$(A \rightarrow B) \& (A \rightarrow C) <: A \rightarrow (B \& C)$$
 S-Distri-Arr

• Results extracted from <u>nested</u> terms will be <u>composed</u> when eliminating terms created by the merge operator.

⁸Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers. "The essence of nested composition". In: 32nd European Conference on Object-Oriented Programming (ECOOP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2018.

Nested Composition via Projection and Application

• For records

$$(\{x = e_1\}, \{x = e_2\}).x \hookrightarrow e_1, e_2$$

Nested Composition via Projection and Application

• For records

$$(\{x = e_1\}, \{x = e_2\}).x \hookrightarrow e_1, e_2$$

• For overloaded functions

 $f: Int \rightarrow Int \rightarrow Int$ $g: Int \rightarrow Bool \rightarrow Bool$ $(f, ,g) 1 \hookrightarrow (f 1), , (g 1)$

Nested Composition via Projection and Application

• For records

$$(\{x = e_1\}, \{x = e_2\}).x \hookrightarrow e_1, e_2$$

• For overloaded functions

 $f: Int \rightarrow Int \rightarrow Int$ $g: Int \rightarrow Bool \rightarrow Bool$ $(f, ,g) 1 \hookrightarrow (f 1), , (g 1)$

• Both cases are "unnatural"

since we allow repeated labels and ambiguous overloaded application.

Goodness of Nested Composition

- [Nested record composition] Key feature of Compositional Programming⁹.
 - solves the Expression Problem naturally.
 - models forms of family polymorphism.

⁹Weixin Zhang, Yaozhu Sun, and Bruno C. d. S. Oliveira. "Compositional Programming". In: ACM Transactions on Programming Languages and Systems (TOPLAS) 43.3 (2021), pp. 1–61.

Goodness of Nested Composition

- [Nested record composition] Key feature of Compositional Programming⁹.
 - solves the Expression Problem naturally.
 - models forms of family polymorphism.
- [Nested function composition] It enables first-class curried overloaded functions.
 - overloaded functions are default curried;
 - we can abstract and return overloaded functions in a flexible way;
 - it's a novel and interesting finding in this work.

⁹Weixin Zhang, Yaozhu Sun, and Bruno C. d. S. Oliveira. "Compositional Programming". In: ACM Transactions on Programming Languages and Systems (TOPLAS) 43.3 (2021), pp. 1–61.

In traditional calculi, we have the following typing rule for application:

$$\frac{\Gamma \vdash e_1 \Rightarrow A \rightarrow B \quad \Gamma \vdash e_2 \Leftarrow A}{\Gamma \vdash e_1 \, e_2 \Rightarrow B} \text{ T-App}$$

This does not apply to case show 1, where

$$\frac{\Gamma \vdash show \Rightarrow A \& B \qquad \Gamma \vdash 1 \Leftarrow ?}{\Gamma \vdash show 1 \Rightarrow ?}$$
T-APP

A direct method is to:

- 1. assume we have the argument type A;
- 2. assume the type of function to be a intersection of function types:

$$(A_1 \to B_1) \& (A_2 \to B_2) \& \dots \& (A_n \to B_n)$$

A direct method is to:

- 1. assume we have the argument type A;
- 2. assume the type of function to be a intersection of function types:

$$(A_1 \to B_1) \& (A_2 \to B_2) \& \dots \& (A_n \to B_n)$$

3. then iterate intersection types by comparing the argument type A and input type A_{i} ;

A direct method is to:

- 1. assume we have the argument type A;
- 2. assume the type of function to be a intersection of function types:

$$(A_1 \to B_1) \& (A_2 \to B_2) \& \dots \& (A_n \to B_n)$$

- 3. then iterate intersection types by comparing the argument type A and input type A_{ij} ;
- 4. compose the outputs as the result type

Challenges in Dynamic Semantics

A direct method is to:

1. assume the overloaded function to be a merge of functions,

Challenges in Dynamic Semantics

A direct method is to:

- 1. assume the overloaded function to be a merge of functions,
- 2. then select correct instances according to the types.

Challenges in Dynamic Semantics

A direct method is to:

- 1. assume the overloaded function to be a merge of functions,
- 2. then select correct instances according to the types.
 - call-by-value strategy
 - type-dependent semantics

Distributivity Breaks the Assumptions

```
pshow : Unit -> (Int -> String) & (Bool -> String)
pshow = \lambda x. show
pshow unit 1 \hookrightarrow "1"
pshow unit true \hookrightarrow "true"
```

Distributivity Breaks the Assumptions

```
pshow : Unit -> (Int -> String) & (Bool -> String)
pshow = \lambda x. show
pshow unit 1 \hookrightarrow "1"
pshow unit true \hookrightarrow "true"
```

- pshow is **not** a merge of functions (wrapped in a lambda);
- its type is **not** a intersection of function types;
- it's still treated as an overloaded function.

Re-interpret Subtyping

We can have two interpretations of $A \ll B \rightarrow C$:

• Suppose A, B and C are given, we tell whether the subtyping holds.

 $(Int \rightarrow String) \& (Bool \rightarrow String) <: Int \rightarrow String$

• Suppose A and B are given, we infer the result type C^{10} .

 $(\mathit{Int} \rightarrow \mathit{String}) \And (\mathit{Bool} \rightarrow \mathit{String}) <: \mathit{Int} \rightarrow ?$

¹⁰which is also the type of overloaded application.

Applicative Subtyping

 $A \ll S$ is a specialized subtyping used to infer the type of applications and projections ¹¹.

$$A_1 \rightarrow A_2 \ll B = A_2$$
 when $B <: A_1$ (1)

$$A_1 \to A_2 \ll B = . \qquad \qquad \text{when } \neg (B <: A_1) \qquad (2)$$

$$\{l = A\} \ll l = A \tag{3}$$

$$\{l_1 = A\} \ll l_2 = .$$
 when $l_1 \neq l_2$ (4)

$$A_1 \& A_2 \ll S = (A_1 \ll S) \odot (A_2 \ll S)$$
(5)

$$A \ll S = .$$
 otherwise (6)

Examples of Applicative Subtyping

show 1

$$(Int \rightarrow String) \& (Bool \rightarrow String) \ll Int$$

by (5) $\hookrightarrow (Int \rightarrow String) \ll Int \odot (Bool \rightarrow String) \ll Int$
by (1) (2) $\hookrightarrow String \odot$.

read "1"

$$(String \rightarrow Int) \& (String \rightarrow Bool) \ll String$$

by (5) $\hookrightarrow (String \rightarrow Int) \ll String \odot (String \rightarrow Bool) \ll String$
by (1) $\hookrightarrow Int \odot Bool$

Composition Operators

One version that implements nested composition semantics ¹².

 $\begin{array}{l} & \odot \cdot & = \cdot \\ A_1 \odot \cdot & = A_1 \\ & \cdot \odot A_2 = A_2 \\ A_1 \odot A_2 = A_1 \& A_2 \end{array}$

 $^{^{\}rm 12}{\rm We}$ have another version of the operator which models the overloading semantics

Examples (applying nested composition semantics)

 $\begin{array}{ll} (Int \rightarrow String) \& (Bool \rightarrow String) \ll Int & = String \\ (String \rightarrow Int) \& (String \rightarrow Bool) \ll String = Int \& Bool \\ \{x : String\} \& \{y : String\} & \ll y & = String \end{array}$

CALCULI DESIGN

Let arguments go "together"

We infer both the type of function (merges) and argument together and then compute.

$$\frac{\Gamma \vdash e_1 \Rightarrow A \qquad \Gamma \vdash e_2 \Rightarrow B \qquad A \ll B = C}{\Gamma \vdash e_1 e_2 \Rightarrow C} \text{ T-App}$$

Examples (applying nested composition semantics)

We assume Γ is $f: I \rightarrow I \rightarrow I, g: I \rightarrow B \rightarrow B$.¹³

$$\frac{\Gamma \vdash (f, g) \Rightarrow (I \to I \to I) \& (I \to B \to B) \qquad \Gamma \vdash 2 \Rightarrow I}{\Gamma \vdash (f, g) 2 \Rightarrow (I \to I) \& (B \to B) \qquad \Gamma \vdash true \Rightarrow B}$$
T-APP
$$\frac{\Gamma \vdash (f, g) 2 \Rightarrow (I \to I) \& (B \to B) \qquad \Gamma \vdash true \Rightarrow B}{\Gamma \vdash (f, g) 2 true \Rightarrow B}$$

1. f, g2. (f, g) 2

3. (f, ,g) 2 true

¹³ I stands for Int, B stands for Bool.

Metatheory

$$(Int \rightarrow String) \& (Bool \rightarrow String) \ll Int = String$$

 $(String \rightarrow Int) \& (String \rightarrow Bool) \ll String = Int \& Bool$
 $\{x : String\} \& \{y : String\} \ll y = String$

$$\begin{array}{l} (Int \rightarrow String) \& (Bool \rightarrow String) <: Int \rightarrow String \\ (String \rightarrow Int) \& (String \rightarrow Bool) <: String \rightarrow Int \& Boo \\ \{x : String\} \& \{y : String\} \qquad <: \{y : String\} \end{array}$$

Metatheory

Lemma (Soundness (Function))

If $A \ll B = C$, then $A <: B \rightarrow C$.

Lemma (Completeness (Function)) $If A <: B \rightarrow C$, then $\exists D, A \ll B = D \land D <: C$.

Calculi Syntax

Expressions	$e ::= x i e : A e_1 e_2 \lambda x . e : A \to B e_1, , e_2 \{ l = e \} e_1$
Raw Values	$p ::= i \mid \lambda x \cdot e : A \to B$
Values	$v ::= p : A^o v_1, , v_2 \{l = v\}$
Contexts	$\Gamma ::= \cdot \mid \Gamma, x : A$

- Values carry extra annotations as runtime types;
- The dispatching is based on runtime types;
- The restriction on runtime types settles a canonical form of overloaded functions.

CALCULI DESIGN

MPLEMENTATIO

Conslusion 00

Operational Semantics

Applicative Dispatching 14

A = = 1 . . .

$$(v \bullet vl) \hookrightarrow e$$

(Applicative Dispatching)

$$\frac{v \longmapsto_{A} v'}{((\lambda x. e : A \to B) : C \to D \bullet v) \hookrightarrow e[x \mapsto v'] : D} \qquad \begin{array}{l} \begin{array}{l} \text{App-Proj} \\ \hline (\{l = v\} \bullet l) \hookrightarrow v \end{array}$$

$$\frac{App-Mrg-L}{(\{l = v\} \bullet l\} \hookrightarrow v)} \\ \hline (\{l = v\} \bullet l) \hookrightarrow v \end{array}$$

$$\frac{App-Mrg-R}{(\{v_1, v_2\} \bullet vl\} \hookrightarrow e} \\ \hline ((v_1, v_2) \bullet vl) \hookrightarrow e \end{array} \qquad \begin{array}{l} \begin{array}{l} \begin{array}{l} App-Mrg-R}{(v_1 \land vl) \hookrightarrow e} \\ \hline ((v_1, v_2) \bullet vl) \hookrightarrow e \end{array}$$

$$\frac{App-Mrg-R}{((v_1, v_2) \bullet vl) \hookrightarrow e} \\ \hline ((v_1, v_2) \bullet vl) \hookrightarrow e \end{array}$$

$$\frac{App-Mrg-R}{((v_1, v_2) \bullet vl) \hookrightarrow e} \\ \hline ((v_1, v_2) \bullet vl) \hookrightarrow e \end{array}$$

 $^{^{^{14}}\}langle v
angle$ extracts the runtime type of v

Type Soundness and Determinism¹⁵

Theorem (Preservation)

$$If \cdot \vdash e \Leftrightarrow A \text{ and } e \longmapsto e', \text{ then } \cdot \vdash e' \Leftarrow A.$$

Theorem (Progress) If $\cdot \vdash e \Leftrightarrow A$, then e is a value or $\exists e', e \longmapsto e'$.

Theorem (Determinism) If e is well-typed, $e \longmapsto e_1$ and $e \longmapsto e_2$, then $e_1 = e_2$.

Interpreter Implementation

- Statically typed;
- A dialect of Lisp;
- 382 Lines of Racket Code:
 - S-expression parsing included;
 - Contract-based runtime check;

Language Tour (1/3)

;; simple literals 42 42.2 #t #f

;; lambda abstraction (λ (x : int) x int)

```
;; function application
((λ (x : int) x int) 1)
;; => (: 1 int)
```

;; annotate a "value" can force a downcast/upcast
(: (: 1 int)
 (& int int)) ;; => duplicate a number
;; => (m (: 1 int) (: 1 int))

Language Tour (2/3)

```
;; merge two values (m 1 #t)
```

```
;; merge two functions
(m (λ (x : int) x int)
(λ (x : bool) x bool))
```

Language Tour (3/3)

```
;; use int+ to add integers (int+ 1 3)
```

```
;; use flo+ to add floats (flo+ 1.0 2.1)
```

```
;; overload int+ and flo+ to create a polymorphic "double" function
((m (λ (x : int) (int+ x x) int)
        (λ (x : float) (flo+ x x) float))
1)
;; => (: 2 int)
```

Conlusion

- Applicative Subtyping & Applicative Dispatching
 - Three Variants of Subtyping
 - Sound/Complete Lemmas
- Formalisation of Two Calculi Design
 - o Type Sound Calculus with an Unrestricted Merge Operator
 - Deterministic Calculus with a Disjoint Merge Operator
- Coq Formalisation & Interpreter Implementation
 - https://github.com/juniorxxue/applicative-intersection

Future Work

- Application Mode
 - Alternative to Applicative Subtyping;
- Bidirectional Typing
 - Recover the advantage of check-mode;
- "Best-Match" Evaluation Strategy
- Compile to Racket
 - o Static Type Checking and Resolution using Macro System