Formalise Your Type System, Intrinsically

Problem Session (2023 April 27)

Xu Xue (HKU Programming Languages Group)

What is?

e PLFA Chapter 2.3 (Debruijn)
 There are two fundamental approaches (extrinsic and intrinsic) to typed lambda calculi.

e One approach, is to first define terms and then define types. Terms exist independent of types, and may
have types assigned to them by separate typing rules.

* Another approach, is to first define types and then define terms. Terms and type rules are intertwined,
and it makes no sense to talk of a term without a type.

e TAPL Chapter 9.6 (Curry-Style vs. Church-Style)

e Semantics is prior to typing: we first define the terms, then define a semantics showing how they behave,
then give a type system that rejects some terms whose behaviors we don't like.

e T[yping is prior to semantics: to define terms and identify the well-typed terms, then give semantics just to
these.

Problem Session

 PLFA (Wadler) promotes Intrinsic Typing by

e Saying “Intrinsic typing is golden” (extrinsically-typed terms require about |.6
times as much code as intrinsically-typed)

* Giving a detailed type-sound formalisation of PCF (STLC + Nat + Fix)
* Mentioning more language constructs (products, sum, let-binding...)

* Presenting a non-trivial calculus formalisation (System Fw + iso-recursive types)

updates

System F in Agda, for Fun and Profit

James Chapman'®V @, Roman Kireev!(®, Chad Nester?, and Philip Wadler?

! JOHK, Hong Kong, Hong Kong
{james.chapman,roman.kireev}@iohk.10
> University of Edinburgh, Edinburgh, UK
{cnester,wadler}@inf.ed.ac.uk

Abstract. System F, also known as the polymorphic A-calculus, is a typed A-
calculus independently discovered by the logician Jean-Yves Girard and the com-
puter scientist John Reynolds. We consider F,,, which adds higher-order kinds
and 1so-recursive types. We present the first complete, intrinsically typed, exe-
cutable, formalisation of System F,, that we are aware of. The work is motivated
by verifying the core language of a smart contract system based on System F,.
The paper is a literate Agda script [14].

Problem Session

* Does this technique really fit well with more non-trivial features?
* Subtyping (e.g., Intersection types)
* Type inference (e.g., Bidirectional Typing)

* Semantics (e.g., Type-directed Operational Semantics)

| et’s see!

Table of Contents

Agda tutorials (<5 mins) (Sorry &)

 Get comfortable with proof by constructions
Review extrinsic formalisation of STLC
Translate to intrinsic formalisation (1-by-1)

* add more language structs

* showcase type safety statement

Discuss about the potential of applying intrinsic typing to 4,

Agda Modules

module where _+ _is binary operator (func.)

open import Data.Nat using (N; zero; suc; + ; * ; =~ ; =)
open import Data.String using (String)
open i1mport Relation.Binary.PropositionalEquality using (. = ; # ; refl)

* Agda allows unicode to name anything.

* Be not surprised when you see a variable named A<B (without any spaces)

Agda Datatypes

data Type : Set where
Int : Type
Arr : Type - Type - Type

data Term : Set where
1lit : N - Term
var : String - Term
lam : String -» Term - Term
app ¢ Term -» Term - Term

Agda Snippets (Extrinsic Typing)

!

data ty : Context -» Term - Type - Set where

ty-1it : V {[n}
- ty [(1it n) Int

ty-var : V {[x A} amm implicit arguments (should be mentioned in explicit arguments)

- [3 x 3 A aam explicit arguments

- ty [(var x) A

ty-lam : V {[x A B e}
-ty (', x ¢ A) e B
- ty [(lam x e) (Arr A B)

ty-app ¢+ V {[e1 e2 A B}
- ty [e1 (Arr A B)
-ty [e2 A
- ty [(app ei1 e2) B

Proof by Construction

When finding a proof of a proposition, you are finding a inhabitant of a type.

e Jerm
e (lit 2)

e (app (lit 2) (lit 3))

e ty [(lit4) Int

o ty-lit ey It's just like the “apply ty-lit” in Coq

Demo [ime

Observations

Proof of Term app (lam "x" (var "x")) (lit 2)

Proof of Typing ty-app (ty-lam (ty-var Z)) ty-11it
Almost Same!
® app corresponds to ty-app

* |am corresponds to ty-lam

e it corresponds to ty-lit

Why not mix them together!

Intrinsic Typing (Principles)

* Jo define a type
* Then define a term which is dependent on those types

e ['HA (vs. Term)

* it reads as “term of type A (under context [)”

Extrinsic

(Lit 4) : Term

(Llam "x" (var "x™))

el : Term
e2 . Term
(app e1 e2) : Term

: Term

Comparison

Intrinsic

(Flit 4) : T + Int

(Flam "x" (~var "x")) : ' = Int = Int

el1 : ' - Int = Int
e2 : [Int
(app e1 e2) : I + Int

The intuition of such formalisation is:
to construct any terms, we should specify its type first

lTo construct a well-typed variable

x:Ae] —var : YV {[A}
—_— > (x : Id)
I'Fx:A >3 x:A

- I - A

eGivenal andA

* Given a explicit variable name “x"

* Given a proof of “x” is in this [

* Then construct a well-typed variable of type A

lTo construct a well-typed lambada

F,x:A|—g:B —lam : V {[x A B}
- —>r,X3A|—B
['HFAx.e: A— B 5T +HA=B

e Givenal, A, B and a bound variable “x”

* Given a proof of well-typed body of type B in a extended [

* Then construct a well-typed lambda of type A to B

lTo construct a well-typed application

—app : V {[A B}

['Fe:A—>B TI'kFe:A -l -A=B
L ——— ST =
F|_€1€2:B _)r_P];:

* Givenal,AandB
* Given a proof of well-typed el of type Ato B
* Given a proof of well-typed e2 of type A

* Then construct a well-typed application of type B

STLC (nominal)

data Type : Set where
= ¢ Type - Type - Type

infix 4 +

data : Context -» Type - Set where

data ty : Context -» Term - Type - Set where

—var ¢ V {[A}
ty-var : V {[x A}

- [2 x 3 A > (x & 1d)
- [2 x 38 A
- ty [(var x) A
- [+~ A
ty-lam : V {[x A B e}
-ty (T, x ¢ A) e B —lam : V {[x A B}
- ty [(lam x e) (Arr A B) >, x¢A + B

ty-app : V {[e1 e2 A B}
- ty [e1 (Arr A B)

-ty [ez A —app : V {I A B}

- ty [(app e1 e2) B - - A= B
- - A
- [- B

STLC (nomlnal) + unit

infix

data : Context - Type - Set where

Funit ¢ V {[}
- [+ Unit

data Type : Set where ~var : YV {[A}
Unit : Type - (x : Id)
=+ Type - Type - Type -3 x 3 A

- [+ A

—lam : V {[x A B}
- [, x¢A + B
- [A = B

—app : V {[A B}
— A = B
— A

— B

—

—_
—

-1 71 71

STLC (nominal) + unit

You can construct well-typed terms You can’'t construct ill-typed terms
-- \x. X : Unit -> Unit --— (\x. x) 1 : Unit
@ Unit = Unit - @ Unit

= Flam (F~var "x" Z7) = Fapp (Flam (Fvar "x" Z)) Funit

-—— (\x. x) 1 : Int
: © Int
= Fapp (Flam (Fvar "x" Z)) (Fint 1)

VVell-typed terms reduces to well-typed terms

infix 2 --
data --» ¢ V {I A} » (I - A) » ([- A) - Set where
r-app: ¢ V {[A B} {e1 e1' : I - A = B} {e2 : [F A}
- e1 - e1’
-» (Fapp e1 e2) —-—- (Happ ei1' e2)
r-app2 ¢« V { AB} {v : [A =B} {e2 e2' : [+ A}

-» Value v
-» @2 ——> e2'
-» (Fapp v e2) —= (lapp v ez2')

* You get a preservation theorem for free

* You get a preservation theorem for free?

* only after you done with the (non-trivial) definition of well-typed reductions

* e.g.,type-preserving substitution &

FUNCTIONAL PEARL

Type-Preserving Renaming and Substitution

CONOR MCBRIDE
University of Nottingham

Abstract

I present a substitution algorithm for the simply-typed A-calculus, represented in the
style of Altenkirch and Reus (1999) which is statically guaranteed to respect scope and
type. Moreover, I use a single traversal function, instantiated first to renaming, then to
substitution. The program is written in Epigram (McBride & McKinna, 2004).

Case study: 4.

Typing

NFes A (Bidirectional Typing)
1 T-VAR T-LAM T-RcD
-ult x:A €T Nz:Ale<B rFe= A
'F 7= Int N'Fz= A 'FAz.e:A—>B=A—>B NE{l=e}={l: A}
T-ApP
e = A T-PROJ T-MRG
I'He, =B N'Fe= A N'-e; = A T-ANN
A<LB=C ALI=B '+ey, = B Ne< A
'Fejey = C N'Fel=B e ,,eo =>A&B N~e:A=A
T-SUB
NFe= A A< B
I'Fe<«<B

Fig. 4: Bi-directional typing. The bidirectional mode syntax is & 1= <«|=.

data F : Context -» Type - Set where

—Hint ¢ V {[}
- N
- [+ Int

—var ¢« V {[A x}
- [2 x 3 A

- [~ A
—lam : V {[}
- (x ¢+ Id) - (A B
- ([, xsA) - B
=l (A = B)

—sub ¢ V {[A B}

[- A
A < B
[- B

I 1 1

—ann ¢ V {[}
-» (A : Type)
- [- A
- [- A

—mrg ¢« V {[A B}

—

-1 1 71
|
vy

—
—

T-LAM
Nz:AFe<«<B

'FAz.e:A—>B=A—>B

T-APP
" €1 = A

r}-62=>B
ALB=C

I'+ej ey = C

T-ANN
'Fe< A

F'Fe: A=A

T-SuUB
I'Fe= A A< B

'Fe<«< B

—Flam : V {[}

- (x ¢ Id) -» (A B :

- (I, x¢A) - B
- [- (A = B)

—sub ¢ V {[A B}
|_

[A
A B
[B

I 1]

Type)

Reduction

e —> e’ (Small-Step Reduction)
STEP-APP
STEP-INT-ANN STEP- ARR-ANN (vi e vy) <5 e
i — 1:Int A.e:A—B — (Az.e:A—>B):A—B ViVy —> e
STEP-PV-SPLIT STEP-PRJ STEP-ANN
Al <<AD A, (vel) — V' —e E P e — ¢’
P:A — p:A,,p:A, vl — V' e:A — e A
STEP-VAL-ANN STEP-APP-L STEP-APP-R STEP-MRG-L
V —>a v/ e, —— ei €y eé €1 — 61
v:iA — VvV’ e1 ey —> e]eo Viey —> Vie, €1,,€2 —> €7,, €
STEP-MRG-R STEP-RCD-R STEP-PRJ-L
e — e, e — e e —> e
Vi,, €2 — Vi,, €, {l=e} — {l=¢'} e.l — e'.l

Fig. 6: Operational Semantics

Reduction

data — ¢« V {I A} - (I - A) - (I - A) -» Set where

Reduction |:Annotation

—Fann : V {[}

- (A : Type)

T+ A STEP-INT-ANN

- [- A : :

1 — 17:1Int

—int ¢ V {I}

- N

- [~ Int

step-int-ann : V {[n}
-» (Fint n) — Fann Int (Fint n)

Reduction 2: Casting

|. Ask:what is the type of vand v’

STEP- VAL-ANN
Vi—3a V'
v:'A —s v/ 3. to construct a annotation, v should be of type A

2. vis of type B and v’ should be of type A (after casting)

4. need a subsumption rule and proof of B <:A

step-val-ann : V {[A B} {v : [- B} {v' : [I A}
- VvV - A > V'
- (B=A : B = A)
-» (Fann A (Fsub v B=A)) — V'

We need a new judgment: casting!

Reduction 2: Casting

vV { B} - (I - B) - (A : Type) - ([- A) - Set where

Lemma castling preservation :
V v v' A B,
value v =
typing nil v Inf B -
casting v A v' =
1 C, typing nil v' Inf C A isosub C A.

Reduction 3: Application

T-AppP
STEP-APP e, = A
(V10V2) — € I'Fe; = B
ALKB=C

Vi Vo H—— €

I'Fej e, = C

data =+ [] ¥V {I ABC}-> (I -—2A) > ([- B) - (A<<B

C) » ([H C) » Set where

step-app ¢+ V {[ABC} {v: : [- A} {v2 : [- B} {A<<B : A << B
- Vi ¢ V2 | A<KB]~ e
- (Fapp vi1 v2 A<<B) — e

C} {e : I + C}

Lemma papp preservation v :
VvvleABDZC¢C,

value v -» value vl -
typing nil v Inf A -
typing nil vl Inf B -
appsub (Some (Avt B)) A C =
papp v (Av vl) e -
(3 D, typing nil e Inf D A isosub D C).

Problem Session

* Does this technique really fit well with more non-trivial features!?
* Subtyping (e.g., Intersection types)
* Seems good, but terms are sometimes confused by subsumption rule (e.g., annotation)
* Type inference (e.g., Bidirectional Typing)
* Semantics (e.g., [ype-directed Operational Semantics)

e Good as long as the semantics respects a type-preservation principle

Conclusions (& opinions)

* [ntrinsic typing is fancy in the perspective of proof engineering
* especially when it's combined with debruijn intrinsic scoping
* [t mixes terms construction with
* is beneficial to saving code and forces you to always consider types
e but reduction rules are messed with
* | wouldn’t recommend to adopt this technique
* when your calculus is in a experimental phase

* but it’s a nice try to formalise classical ones where required theorems are already clear

Further reading

Intrinsic typing in Coq (https://github.com/annenkov/stlcnorm)

Full proof of PCF (PLFA Chapter Debruijn)

Integration of language constructs (PLFA Chapter More)
Discussion of bidirectional typing (PLFA Chapter Inference)

* by defining a translate function from extrinsic typing to intrinsic
Advanced language features (System F in Agda, for fun and profit)

* Parametric polymorphism

* Higher-order types

* |so-recursive types

https://github.com/annenkov/stlcnorm

Questions

e Q:Worry about more advanced feature, like dependent types!?
 Q:Sub constructor previously didn’t appear in the term, but now!

e Q:How to measure the equality of two terms (one term may have two derivations)!?

