Formalise Your Type System, Intrinsically

Problem Session (2023 April 27)

Xu Xue (HKU Programming Languages Group)

What is?

- PLFA Chapter 2.3 (Debruijn)
 - There are two fundamental approaches (extrinsic and intrinsic) to typed lambda calculi.
 - have types assigned to them by separate typing rules.
 - and it makes no sense to talk of a term without a type.
- TAPL Chapter 9.6 (Curry-Style vs. Church-Style)
 - then give a type system that rejects some terms whose behaviors we don't like.
 - these.

• One approach, is to first define terms and then define types. Terms exist independent of types, and may

• Another approach, is to first define types and then define terms. Terms and type rules are intertwined,

• Semantics is prior to typing: we first define the terms, then define a semantics showing how they behave,

• Typing is prior to semantics: to define terms and identify the well-typed terms, then give semantics just to

Problem Session

- PLFA (Wadler) promotes Intrinsic Typing by
 - Saying "Intrinsic typing is golden" (extrinsically-typed terms require about 1.6 times as much code as intrinsically-typed)
 - Giving a detailed type-sound formalisation of PCF (STLC + Nat + Fix)
 - Mentioning more language constructs (products, sum, let-binding...)
 - Presenting a non-trivial calculus formalisation (System Fw + iso-recursive types)

System F in Agda, for Fun and Profit

James Chapman^{1(\boxtimes)}, Roman Kireev¹, Chad Nester², and Philip Wadler²

¹ IOHK, Hong Kong, Hong Kong {james.chapman,roman.kireev}@iohk.io
² University of Edinburgh, Edinburgh, UK {cnester,wadler}@inf.ed.ac.uk

Abstract. System *F*, also known as the polymorphic λ -calculus, is a typed λ -calculus independently discovered by the logician Jean-Yves Girard and the computer scientist John Reynolds. We consider $F_{\omega\mu}$, which adds higher-order kinds and iso-recursive types. We present the first complete, intrinsically typed, executable, formalisation of System $F_{\omega\mu}$ that we are aware of. The work is motivated by verifying the core language of a smart contract system based on System $F_{\omega\mu}$. The paper is a literate Agda script [14].

updates

Problem Session

- Does this technique really fit well with more non-trivial features?
 - Subtyping (e.g., Intersection types)
 - Type inference (e.g., Bidirectional Typing)
 - Semantics (e.g., Type-directed Operational Semantics)

Let's see!

Table of Contents

- Agda tutorials (<5 mins) (Sorry 🥲)
 - Get comfortable with proof by constructions
- Review extrinsic formalisation of STLC
- Translate to intrinsic formalisation (I-by-I)
 - add more language structs
 - showcase type safety statement
- Discuss about the potential of applying intrinsic typing to λ_i

- Agda allows unicode to name anything.

Agda Modules

• Be not surprised when you see a variable named A<B (without any spaces)

data Type : Set where Int : Type Arr : Type \rightarrow Type \rightarrow Type

data Term : Set where lit : $\mathbb{N} \rightarrow \text{Term}$ var : String → Term lam : String → Term → Term app : Term → Term → Term

Agda Datatypes

data ty : Context \rightarrow Term \rightarrow Type \rightarrow Set where

ty-lit : $\forall \{\Gamma n\}$ \rightarrow ty Γ (lit n) Int

<--- implicit arguments (should be mentioned in explicit arguments) ty-var : $\forall \{ \Gamma \times A \}$ $\rightarrow \Gamma \ni x \circ A$ explicit arguments \rightarrow ty Γ (var x) A

ty-lam : $\forall \{ \Gamma \times A B e \}$ \rightarrow ty (Γ , x $^{\circ}$ A) e B \rightarrow ty Γ (lam x e) (Arr A B)

ty-app : $\forall \{ \Gamma e_1 e_2 A B \}$ \rightarrow ty Γ e₁ (Arr A B) \rightarrow ty Γ e₂ A \rightarrow ty Γ (app e₁ e₂) B

When finding a proof of a proposition, you are finding a inhabitant of a type.

- Term
 - (lit 2)
 - (app (lit 2) (lit 3))
 - . . .
- ty Γ (lit 4) Int
 - It's just like the "apply ty-lit" in Coq • ty-lit •

Proof by Construction

Demo Time

Proof of Term

Proof of Typing

app

Almost Same!

- app corresponds to ty-app
- lam corresponds to ty-lam
- lit corresponds to ty-lit

Observations

(lam "x" (var "x")) (lit 2) ty-app (ty-lam (ty-var Z)) ty-lit

Why not mix them together?

Intrinsic Typing (Principles)

- To define a type
- Then define a term which is dependent on those types
 - $\Gamma \vdash A$ (vs.Term)
 - it reads as "term of type A (under context Γ)"

Comparison

Extrinsic

(lit 4) : Term

(lam "x" (var "x")) : Term

e1 : Term e2 : Term (app e1 e2) : Term Intrinsic

 $(\vdash$ lit 4) : $\Gamma \vdash$ Int

 $(\vdash lam "x" (\vdash var "x")) : \Gamma \vdash Int \Rightarrow Int$

e1 : $\Gamma \vdash Int \Rightarrow Int$ e2 : Γ ⊢ Int $(\vdash app e1 e2) : \Gamma \vdash Int$

The intuition of such formalisation is: to construct any terms, we should specify its type first

To construct a well-typed variable

$x: A \in \Gamma$ $\Gamma \vdash x : A$

- Given a Γ and A
- Given a explicit variable name "x"
- Given a proof of "x" is in this Γ
- Then construct a well-typed variable of type A

\vdash var : $\forall \{ \Gamma A \}$ \rightarrow (x : Id) $\rightarrow \Gamma \exists x : A$ $\rightarrow \Gamma \vdash A$

To construct a well-typed lambda

$\Gamma, x : A \vdash e : B$ $\Gamma \vdash \lambda x \cdot e : A \rightarrow B$

- Given a Γ , A, B and a bound variable "x"
- Given a proof of well-typed body of type B in a extended F
- Then construct a well-typed lambda of type A to B

\vdash lam : $\forall \{ \Gamma x A B \}$ $\rightarrow \Gamma$, x \circ A \vdash B $\rightarrow \Gamma \vdash A \Rightarrow B$

To construct a well-typed application

$\Gamma \vdash e_1 : A \to B \quad \Gamma \vdash e_2 : A$ $\Gamma \vdash e_1 e_2 : B$

- Given a Γ , A and B
- Given a proof of well-typed el of type A to B
- Given a proof of well-typed e2 of type A
- Then construct a well-typed application of type B

 \vdash app : $\forall \{ \Gamma A B \}$ $\rightarrow \Gamma \vdash A \Rightarrow B$ $\rightarrow \Gamma \vdash A$ $\rightarrow \Gamma \vdash B$

```
data ty : Context \rightarrow Term \rightarrow Type \rightarrow Set where
   ty-var : \forall \{ \Gamma \times A \}
       \rightarrow \Gamma \exists x : A
        \rightarrow ty \Gamma (var x) A
   ty-lam : \forall \{ \Gamma \times A B e \}
       \rightarrow ty (\Gamma , x ^{\circ} A) e B
        \rightarrow ty \Gamma (lam x e) (Arr A B)
   ty-app : \forall \{ \Gamma e_1 e_2 A B \}
        \rightarrow ty \Gamma e<sub>1</sub> (Arr A B)
        \rightarrow ty \Gamma e<sub>2</sub> A
        \rightarrow ty \Gamma (app e<sub>1</sub> e<sub>2</sub>) B
```

STLC (nominal)

data Type : Set where \Rightarrow : Type \rightarrow Type \rightarrow Type

infix 4 ⊢ data $_\vdash_$: Context \rightarrow Type \rightarrow Set where

$$\begin{array}{cccc} \vdash var : & \forall & \{ \Gamma & A \} \\ & \rightarrow & (x : Id) \\ & \rightarrow & \Gamma & \ni & x & \$ & A \\ & \rightarrow & \Gamma & \vdash & A \end{array}$$

 \vdash lam : $\forall \{ \Gamma x A B \}$ $\rightarrow \Gamma$, x \circ A \vdash B $\rightarrow \Gamma \vdash A \Rightarrow B$

 \vdash app : $\forall \{ \Gamma A B \}$ $\rightarrow \Gamma \vdash A \Rightarrow B$ $\rightarrow \Gamma \vdash A$ $\rightarrow \Gamma \vdash B$

STLC (nominal) + unit

data Type : Set where Unit : Type _→___: Type → Type → Type infix 4 \vdash data \vdash : Context \rightarrow Type \rightarrow Set where

 $\vdash unit : \forall \{\Gamma\}$ $\rightarrow \Gamma \vdash Unit$

$$\begin{array}{cccc} \vdash var : & \forall & \{ \Gamma & A \} \\ & \rightarrow & (x : Id) \\ & \rightarrow & \Gamma & \ni & x & \$ & A \\ & \rightarrow & \Gamma & \vdash & A \end{array}$$

 $\vdash \text{lam} : \forall \{ \Gamma \times A B \}$ $\rightarrow \Gamma , \times \circ A \vdash B$ $\rightarrow \Gamma \vdash A \Rightarrow B$

$$\begin{array}{c} \vdash app : \forall \{ \Gamma \ A \ B \} \\ \rightarrow \Gamma \ \vdash A \ \Rightarrow B \\ \rightarrow \Gamma \ \vdash A \\ \rightarrow \Gamma \ \vdash B \end{array}$$

STLC (nominal) + unit

You can construct well-typed terms

 $-- \x. x$: Unit -> Unit : $\emptyset \vdash \text{Unit} \Rightarrow \text{Unit}$

- $= \vdash lam (\vdash var "x" Z)$
- -- (\x. x) 1 : Int
- : Ø⊢ Int

 $= \vdash app (\vdash lam (\vdash var "x" Z)) (\vdash int 1)$

You can't construct ill-typed terms

-- (\x. x) 1 : Unit : Ø ⊢ Unit $= \vdash app (\vdash lam (\vdash var "x" Z)) \vdash unit$

Well-typed terms reduces to well-typed terms

infix $2 \rightarrow$

 \rightarrow e₁ \rightarrow e₁' \rightarrow (\vdash app e₁ e₂) \rightarrow (\vdash app e₁' e₂)

 \rightarrow Value v \rightarrow e₂ \rightarrow e₂' \rightarrow (\vdash app v e₂) \rightarrow (\vdash app v e₂')

• You get a preservation theorem for free

data $_ \rightarrow _$: $\forall \{ \Gamma A \} \rightarrow (\Gamma \vdash A) \rightarrow (\Gamma \vdash A) \rightarrow Set where$ $r-app_1 : \forall \{ \Gamma A B \} \{ e_1 e_1' : \Gamma \vdash A \Rightarrow B \} \{ e_2 : \Gamma \vdash A \}$ $r-app_2 : \forall \{ \Gamma A B \} \{ v : \Gamma \vdash A \Rightarrow B \} \{ e_2 e_2' : \Gamma \vdash A \}$

- You get a preservation theorem for free?

 - e.g., type-preserving substitution (2)

I present a substitution algorithm for the simply-typed λ -calculus, represented in the style of Altenkirch and Reus (1999) which is statically guaranteed to respect scope and type. Moreover, I use a single traversal function, instantiated first to renaming, then to substitution. The program is written in Epigram (McBride & McKinna, 2004).

only after you done with the (non-trivial) definition of well-typed reductions

FUNCTIONAL PEARL

Type-Preserving Renaming and Substitution

CONOR MCBRIDE

University of Nottingham

Abstract

$\Gamma \vdash e_2 \Rightarrow B$	$\Gamma \vdash e \Rightarrow A$
$A \ll B = C$	$A \ll l = B$
$\overline{\Gamma \vdash e_1 e_2 \Rightarrow C}$	$\overline{\Gamma \vdash e.l \Rightarrow B}$
	T-Sub
	I ⊢ e =

 $\frac{\Rightarrow A}{\Gamma \vdash}$

Fig. 4: Bi-directional typing. The bidirectional mode syntax is $\Leftrightarrow ::= \langle \leftarrow | \Rightarrow$.

Typing

(Bidirectional Typing)

- -

 $\Gamma, x : A \vdash e \Leftarrow B$ $\Gamma \vdash \lambda x. e : A \rightarrow B \Rightarrow A \rightarrow B$

T-RCD $\Gamma \vdash e \Rightarrow A$ $\overline{\Gamma \vdash \{l = e\}} \Rightarrow \{l : A\}$

$$\begin{array}{l} \text{T-MRG} \\ \Gamma \vdash e_1 \Rightarrow A \\ \Gamma \vdash e_2 \Rightarrow B \end{array} & \begin{array}{c} \text{T-ANN} \\ \Gamma \vdash e \notin A \\ \hline \Gamma \vdash e_1, e_2 \Rightarrow A \& B \end{array} & \begin{array}{c} \Gamma \vdash e \notin A \\ \hline \Gamma \vdash e : A \Rightarrow A \end{array}$$

$$\frac{A}{e \leftarrow B}$$

data
$$_\vdash_$$
 : Context \rightarrow Type \rightarrow Set where
 \vdash int : $\forall \{\Gamma\}$
 $\rightarrow \mathbb{N}$
 $\rightarrow \Gamma \vdash$ Int
 \vdash var : $\forall \{\Gamma \land x\}$
 $\rightarrow \Gamma \not\ni x \circ \land$
 $\rightarrow \Gamma \vdash \land \land$
 \vdash lam : $\forall \{\Gamma\}$
 $\rightarrow (x : Id) \rightarrow (\land B : Type)$
 $\rightarrow (\Gamma , x \circ \land) \vdash B$
 $\rightarrow \Gamma \vdash (\land \Rightarrow B)$

$$\vdash \text{app} : \forall \{ \Gamma \land B \land C \}$$

$$\rightarrow \Gamma \vdash A$$

$$\rightarrow \Gamma \vdash B$$

$$\rightarrow A \iff B \equiv C$$

$$\rightarrow \Gamma \vdash C$$

$\begin{array}{cccc} \vdash \operatorname{sub} : & \forall & \{ \Gamma \ A \ B \} \\ & \rightarrow & \Gamma & \vdash & A \\ & \rightarrow & A & \leq & B \\ & \rightarrow & \Gamma & \vdash & B \end{array} \end{array}$

 $\vdash ann : \forall \{\Gamma\}$ $\rightarrow (A : Type)$ $\rightarrow \Gamma \vdash A$ $\rightarrow \Gamma \vdash A$

 $\vdash \operatorname{mrg} : \forall \{ \Gamma \land B \}$ $\rightarrow \Gamma \vdash A$ $\rightarrow \Gamma \vdash B$ $\rightarrow \Gamma \vdash (A \& B)$

$$\begin{array}{c} \text{T-LAM} \\ \Gamma, x : A \vdash e \Leftarrow B \\ \hline \Gamma \vdash \lambda x. e : A \rightarrow B \Rightarrow A \rightarrow B \end{array}$$

$$T-APP$$

$$\Gamma \vdash e_1 \Rightarrow A$$

$$\Gamma \vdash e_2 \Rightarrow B$$

$$A \ll B = C$$

$$\overline{\Gamma \vdash e_1 e_2} \Rightarrow C$$

$$\begin{array}{c} \text{T-Ann} \\ \Gamma \vdash e \Leftarrow A \\ \hline \Gamma \vdash e : A \Rightarrow A \end{array}$$

$$\begin{array}{l} \text{T-SUB} \\ \Gamma \vdash e \Rightarrow A \qquad A <: B \\ \hline \Gamma \vdash e \Leftarrow B \end{array}$$

$$\begin{array}{l} \vdash \mathsf{lam} : \forall \{ \mathsf{\Gamma} \} \\ \rightarrow (\mathsf{x} : \mathsf{Id}) \rightarrow (\mathsf{A} \mathsf{B} : \mathsf{Type}) \\ \rightarrow (\mathsf{\Gamma}, \mathsf{x} & \mathsf{A}) \vdash \mathsf{B} \\ \rightarrow \mathsf{\Gamma} \vdash (\mathsf{A} \Rightarrow \mathsf{B}) \end{array}$$

$$\vdash \text{app} : \forall \{ \Gamma A B C \}$$

$$\rightarrow \Gamma \vdash A$$

$$\rightarrow \Gamma \vdash B$$

$$\rightarrow A \iff B \equiv C$$

$$\rightarrow \Gamma \vdash C$$

$$\vdash ann : \forall \{\Gamma\}$$

$$\rightarrow (A : Type)$$

$$\rightarrow \Gamma \vdash A$$

$$\rightarrow \Gamma \vdash A$$

$$\vdash \text{sub} : \forall \{ \Gamma \land B \}$$

$$\rightarrow \Gamma \vdash A$$

$$\rightarrow A \leq B$$

$$\rightarrow \Gamma \vdash B$$

Step-Int-Ann STEP-ARR-ANN $\lambda x. e : A \rightarrow B \longmapsto$ $i \mapsto i: \mathsf{Int}$

Step-Val-Ann	Step-App-L
$\nu \mapsto_A \nu'$	$e_1 \longmapsto e_1'$
$\overline{\nu: A \mapsto \nu'}$	$\overline{e_1 e_2 \ \longmapsto \ e_1' e_2}$

Fig. 6: Operational Semantics

Reduction

(Small-Step Reduction)

	$\operatorname{Step-App}$
	$(\mathbf{v}_1 ullet \mathbf{v}_2) \ \hookrightarrow \ \mathbf{e}$
$(\lambda x. e : A \rightarrow B) : A \rightarrow B$	$v_1 v_2 \longmapsto e$

Step-Prj

Step-Ann $\frac{(\nu \bullet l) \hookrightarrow \nu'}{\nu . l \longmapsto \nu'} \qquad \qquad \frac{\neg e \in p \qquad e \longmapsto e'}{e : A \longmapsto e' : A}$

Step-App-R EP-RCD-R $e \mapsto e'$

Step-Mrg-L $e_2 \ \longmapsto \ e_2' \qquad \qquad e_1 \ \longmapsto \ e_1'$ $\nu_1 e_2 \longmapsto \nu_1 e_2' \qquad e_1,, e_2 \longmapsto e_1',, e_2$ Step-Prj-L $e \mapsto e'$ $e.l \mapsto e'.l$

Reduction

data ____ : $\forall \{ \Gamma A \} \rightarrow (\Gamma \vdash A) \rightarrow (\Gamma \vdash A) \rightarrow Set where$

step-int-ann : $\forall \{\Gamma n\}$

Reduction I: Annotation

Step-Int-Ann

 $i \mapsto i: \mathsf{Int}$

 \rightarrow (\vdash int n) \rightarrow \vdash ann Int (\vdash int n)

Reduction 2: Casting

4. need a subsumption rule and proof of B <: A

step-val-ann :
$$\forall \{ \Gamma A \rightarrow v - A \rightarrow v' \}$$

 $\rightarrow (B \leq A : B \leq A)$
 $\rightarrow (\vdash ann A (\vdash sub v E)$

I. Ask: what is the type of v and v'

of type B and v' should be of type A (after casting)

onstruct a annotation, v should be of type A

B}
$$\{v : \Gamma \vdash B\} \{v' : \Gamma \vdash A\}$$

B≤A)) → v'

We need a new judgment: casting!

Reduction 2: Casting

data _ - - : $\forall \{ \Gamma B \} \rightarrow (\Gamma \vdash B) \rightarrow (A : Type) \rightarrow (\Gamma \vdash A) \rightarrow Set where$

```
Lemma casting preservation :
  ∀vv'AB,
     value v \rightarrow
     typing nil v Inf B \rightarrow
     casting v A v' \rightarrow
Proof.
```

 \exists C, typing nil v' Inf C \land isosub C A.

data
$$_\cdot_[_] \sim_: \forall \{ \Gamma \land B \land C \} \rightarrow (\Gamma \vdash A) \rightarrow (\Gamma \vdash B) \rightarrow (A << B \equiv C) \rightarrow (\Gamma \vdash C) \rightarrow \text{Set wh}$$

step-app : $\forall \{ \Gamma \land B \land C \} \{ v_1 : \Gamma \vdash A \} \{ v_2 : \Gamma \vdash B \} \{ A << B = C \} \{ e : \Gamma \vdash C \}$
 $\rightarrow v_1 \cdot v_2 [A << B] \sim e$
 $\rightarrow (\vdash app v_1 v_2 \land A << B) \rightarrow e$
Lemma papp_preservation_v :
 $\forall v \lor e \land B \land C,$
value $\lor i \rightarrow d e \land C,$
 $v_1 \lor i \land C \rightarrow d e \land C \rightarrow d \land$

Proof.

Reduction 3: Application

$$\begin{array}{l} \text{T-APP} \\ \Gamma \vdash e_1 \Rightarrow A \\ \Gamma \vdash e_2 \Rightarrow B \\ A \ll B = C \\ \hline \Gamma \vdash e_1 e_2 \Rightarrow C \end{array}$$

```
papp v (Av vl) e →
(\exists D, typing nil e Inf D \land isosub D C).
```

lere

Problem Session

- Does this technique really fit well with more non-trivial features?
 - Subtyping (e.g., Intersection types)
 - Type inference (e.g., Bidirectional Typing)
 - Semantics (e.g., Type-directed Operational Semantics)
 - Good as long as the semantics respects a type-preservation principle

• Seems good, but terms are sometimes confused by subsumption rule (e.g., annotation)

Conclusions (& opinions)

- Intrinsic typing is fancy in the perspective of proof engineering
 - especially when it's combined with debruijn intrinsic scoping
- It mixes terms construction with typing proof construction
 - is beneficial to saving code and forces you to always consider types
 - but reduction rules are messed with proof of type preservation
- I wouldn't recommend to adopt this technique
 - when your calculus is in a experimental phase
 - but it's a nice try to formalise classical ones where required theorems are already clear

Further reading

- Intrinsic typing in Coq (<u>https://github.com/annenkov/stlcnorm</u>)
- Full proof of PCF (PLFA Chapter Debruijn)
- Integration of language constructs (PLFA Chapter More)
- Discussion of bidirectional typing (PLFA Chapter Inference)
 - by defining a translate function from extrinsic typing to intrinsic
- Advanced language features (System F in Agda, for fun and profit)
 - Parametric polymorphism
 - Higher-order types
 - Iso-recursive types

Questions

- Q:Worry about more advanced feature, like dependent types?
- Q: Sub constructor previously didn't appear in the term, but now?
- Q: How to measure the equality of two terms (one term may have two derivations)?