
Formalise Your Type System, Intrinsically

Problem Session (2023 April 27)

Xu Xue (HKU Programming Languages Group)

What is?
• PLFA Chapter 2.3 (Debruijn)

• There are two fundamental approaches (extrinsic and intrinsic) to typed lambda calculi.

• One approach, is to first define terms and then define types. Terms exist independent of types, and may
have types assigned to them by separate typing rules.

• Another approach, is to first define types and then define terms. Terms and type rules are intertwined,
and it makes no sense to talk of a term without a type.

• TAPL Chapter 9.6 (Curry-Style vs. Church-Style)

• Semantics is prior to typing: we first define the terms, then define a semantics showing how they behave,
then give a type system that rejects some terms whose behaviors we don't like.

• Typing is prior to semantics: to define terms and identify the well-typed terms, then give semantics just to
these.

Problem Session

• PLFA (Wadler) promotes Intrinsic Typing by

• Saying “Intrinsic typing is golden” (extrinsically-typed terms require about 1.6
times as much code as intrinsically-typed)

• Giving a detailed type-sound formalisation of PCF (STLC + Nat + Fix)

• Mentioning more language constructs (products, sum, let-binding…)

• Presenting a non-trivial calculus formalisation (System Fw + iso-recursive types)

Problem Session

• Does this technique really fit well with more non-trivial features?

• Subtyping (e.g., Intersection types)

• Type inference (e.g., Bidirectional Typing)

• Semantics (e.g., Type-directed Operational Semantics)

Let’s see!

Table of Contents
• Agda tutorials (<5 mins) (Sorry 🥲)

• Get comfortable with proof by constructions

• Review extrinsic formalisation of STLC

• Translate to intrinsic formalisation (1-by-1)

• add more language structs

• showcase type safety statement

• Discuss about the potential of applying intrinsic typing to λi

Agda Modules

module _ where

open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _^_; _∸_)
open import Data.String using (String)
open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl)

Nat _+_ is binary operator (func.)

• Agda allows unicode to name anything.

• Be not surprised when you see a variable named A<B (without any spaces)

Agda Datatypes

data Type : Set where
 Int : Type
 Arr : Type → Type → Type

data Term : Set where
 lit : ℕ → Term
 var : String → Term
 lam : String → Term → Term
 app : Term → Term → Term

Agda Snippets (Extrinsic Typing)
data ty : Context → Term → Type → Set where

 ty-lit : ∀ {Γ n}
 → ty Γ (lit n) Int

 ty-var : ∀ {Γ x A}
 → Γ ∋ x ⦂ A
 → ty Γ (var x) A

 ty-lam : ∀ {Γ x A B e}
 → ty (Γ , x ⦂ A) e B
 → ty Γ (lam x e) (Arr A B)

 ty-app : ∀ {Γ e₁ e₂ A B}
 → ty Γ e₁ (Arr A B)
 → ty Γ e₂ A
 → ty Γ (app e₁ e₂) B

implicit arguments (should be mentioned in explicit arguments)

explicit arguments

Prop

Proof by Construction

• Term

• (lit 2)

• (app (lit 2) (lit 3))

• …

• ty Γ (lit 4) Int

• ty-lit It’s just like the “apply ty-lit” in Coq

When finding a proof of a proposition, you are finding a inhabitant of a type.

Demo Time

Observations

app (lam "x" (var "x")) (lit 2)
ty-app (ty-lam (ty-var Z)) ty-lit

Almost Same!

• app corresponds to ty-app

• lam corresponds to ty-lam

• lit corresponds to ty-lit

Proof of Term

Proof of Typing

Why not mix them together?

Intrinsic Typing (Principles)

• To define a type

• Then define a term which is dependent on those types

• (vs. Term)

• it reads as “term of type A (under context Γ)”

Γ ⊢ A

Comparison

Extrinsic Intrinsic

(lit 4) : Term (⊢lit 4) : Γ ⊢ Int

(lam "x" (var "x")) : Term (⊢lam "x" (⊢var "x")) : Γ ⊢ Int ⇒ Int

e1 : Term
e2 : Term
(app e1 e2) : Term

e1 : Γ ⊢ Int ⇒ Int
e2 : Γ ⊢ Int
(⊢app e1 e2) : Γ ⊢ Int

The intuition of such formalisation is:
to construct any terms, we should specify its type first

To construct a well-typed variable

x : A ∈ Γ
Γ ⊢ x : A

 ⊢var : ∀ {Γ A}
 → (x : Id)
 → Γ ∋ x ⦂ A
 → Γ ⊢ A

•Given a Γ and A

•Given a explicit variable name “x"

•Given a proof of “x” is in this Γ

•Then construct a well-typed variable of type A

To construct a well-typed lambda

Γ, x : A ⊢ e : B
Γ ⊢ λx . e : A → B

 ⊢lam : ∀ {Γ x A B}
 → Γ , x ⦂ A ⊢ B
 → Γ ⊢ A ⇒ B

• Given a Γ, A, B and a bound variable “x”

• Given a proof of well-typed body of type B in a extended Γ

• Then construct a well-typed lambda of type A to B

To construct a well-typed application

Γ ⊢ e1 : A → B Γ ⊢ e2 : A
Γ ⊢ e1 e2 : B

• Given a Γ, A and B

• Given a proof of well-typed e1 of type A to B

• Given a proof of well-typed e2 of type A

• Then construct a well-typed application of type B

 ⊢app : ∀ {Γ A B}
 → Γ ⊢ A ⇒ B
 → Γ ⊢ A
 → Γ ⊢ B

STLC (nominal)
data Type : Set where
 ⇒ : Type → Type → Type

infix 4 _⊢_
data _⊢_ : Context → Type → Set where

 ⊢var : ∀ {Γ A}
 → (x : Id)
 → Γ ∋ x ⦂ A
 → Γ ⊢ A

 ⊢lam : ∀ {Γ x A B}
 → Γ , x ⦂ A ⊢ B
 → Γ ⊢ A ⇒ B

 ⊢app : ∀ {Γ A B}
 → Γ ⊢ A ⇒ B
 → Γ ⊢ A
 → Γ ⊢ B

data ty : Context → Term → Type → Set where

 ty-var : ∀ {Γ x A}
 → Γ ∋ x ⦂ A
 → ty Γ (var x) A

 ty-lam : ∀ {Γ x A B e}
 → ty (Γ , x ⦂ A) e B
 → ty Γ (lam x e) (Arr A B)

 ty-app : ∀ {Γ e₁ e₂ A B}
 → ty Γ e₁ (Arr A B)
 → ty Γ e₂ A
 → ty Γ (app e₁ e₂) B

STLC (nominal) + unit

data Type : Set where
 Unit : Type
 ⇒ : Type → Type → Type

infix 4 _⊢_
data _⊢_ : Context → Type → Set where

 ⊢unit : ∀ {Γ}
 → Γ ⊢ Unit

 ⊢var : ∀ {Γ A}
 → (x : Id)
 → Γ ∋ x ⦂ A
 → Γ ⊢ A

 ⊢lam : ∀ {Γ x A B}
 → Γ , x ⦂ A ⊢ B
 → Γ ⊢ A ⇒ B

 ⊢app : ∀ {Γ A B}
 → Γ ⊢ A ⇒ B
 → Γ ⊢ A
 → Γ ⊢ B

STLC (nominal) + unit

You can construct well-typed terms
 
-- \x. x : Unit -> Unit
_ : ∅ ⊢ Unit ⇒ Unit
_ = ⊢lam (⊢var "x" Z)

-- (\x. x) 1 : Int
_ : ∅ ⊢ Int
_ = ⊢app (⊢lam (⊢var "x" Z)) (⊢int 1)

You can't construct ill-typed terms

-- (\x. x) 1 : Unit
_ : ∅ ⊢ Unit
_ = ⊢app (⊢lam (⊢var "x" Z)) ⊢unit

Well-typed terms reduces to well-typed terms
infix 2 _-→_

data _-→_ : ∀ {Γ A} → (Γ ⊢ A) → (Γ ⊢ A) → Set where

 r-app₁ : ∀ {Γ A B} {e₁ e₁' : Γ ⊢ A ⇒ B} {e₂ : Γ ⊢ A}
 → e₁ -→ e₁'
 → (⊢app e₁ e₂) -→ (⊢app e₁' e₂)

 r-app₂ : ∀ {Γ A B} {v : Γ ⊢ A ⇒ B} {e₂ e₂' : Γ ⊢ A}
 → Value v
 → e₂ -→ e₂'
 → (⊢app v e₂) -→ (⊢app v e₂')

• You get a preservation theorem for free

• You get a preservation theorem for free?

• only after you done with the (non-trivial) definition of well-typed reductions

• e.g., type-preserving substitution 🥲

Case study: λi

Typing

data _⊢_ : Context → Type → Set where

 ⊢int : ∀ {Γ}
 → ℕ
 → Γ ⊢ Int

 ⊢var : ∀ {Γ A x}
 → Γ ∋ x ⦂ A
 → Γ ⊢ A

 ⊢lam : ∀ {Γ}
 → (x : Id) → (A B : Type)
 → (Γ , x ⦂ A) ⊢ B
 → Γ ⊢ (A ⇒ B)

 ⊢app : ∀ {Γ A B C}
 → Γ ⊢ A
 → Γ ⊢ B
 → A << B ≡ C
 → Γ ⊢ C

 ⊢sub : ∀ {Γ A B}
 → Γ ⊢ A
 → A ≤ B
 → Γ ⊢ B

 ⊢ann : ∀ {Γ}
 → (A : Type)
 → Γ ⊢ A
 → Γ ⊢ A

 ⊢mrg : ∀ {Γ A B}
 → Γ ⊢ A
 → Γ ⊢ B
 → Γ ⊢ (A & B)

 ⊢lam : ∀ {Γ}
 → (x : Id) → (A B : Type)
 → (Γ , x ⦂ A) ⊢ B
 → Γ ⊢ (A ⇒ B)

 ⊢app : ∀ {Γ A B C}
 → Γ ⊢ A
 → Γ ⊢ B
 → A << B ≡ C
 → Γ ⊢ C

 ⊢ann : ∀ {Γ}
 → (A : Type)
 → Γ ⊢ A
 → Γ ⊢ A  
 
 ⊢sub : ∀ {Γ A B}
 → Γ ⊢ A
 → A ≤ B
 → Γ ⊢ B

Reduction

Reduction

data _⟶_ : ∀ {Γ A} → (Γ ⊢ A) → (Γ ⊢ A) → Set where

Reduction 1: Annotation

 step-int-ann : ∀ {Γ n}
 → (⊢int n) ⟶ ⊢ann Int (⊢int n)

 ⊢ann : ∀ {Γ}
 → (A : Type)
 → Γ ⊢ A
 → Γ ⊢ A

 ⊢int : ∀ {Γ}
 → ℕ
 → Γ ⊢ Int

Reduction 2: Casting

 step-val-ann : ∀ {Γ A B} {v : Γ ⊢ B} {v' : Γ ⊢ A}
 → v - A ⇢ v'
 → (B≤A : B ≤ A)
 → (⊢ann A (⊢sub v B≤A)) ⟶ v'

1. Ask: what is the type of v and v’

2. v is of type B and v’ should be of type A (after casting)

3. to construct a annotation, v should be of type A

4. need a subsumption rule and proof of B <: A

We need a new judgment: casting!

Reduction 2: Casting

data _-_⇢_ : ∀ {Γ B} → (Γ ⊢ B) → (A : Type) → (Γ ⊢ A) → Set where

Reduction 3: Application

data _∙_[_]↝_ : ∀ {Γ A B C} → (Γ ⊢ A) → (Γ ⊢ B) → (A << B ≡ C) → (Γ ⊢ C) → Set where  
 
step-app : ∀ {Γ A B C} {v₁ : Γ ⊢ A} {v₂ : Γ ⊢ B} {A<<B : A << B ≡ C} {e : Γ ⊢ C}
 → v₁ ∙ v₂ [A<<B]↝ e
 → (⊢app v₁ v₂ A<<B) ⟶ e

Problem Session

• Does this technique really fit well with more non-trivial features?

• Subtyping (e.g., Intersection types)

• Seems good, but terms are sometimes confused by subsumption rule (e.g., annotation)

• Type inference (e.g., Bidirectional Typing)

• Semantics (e.g., Type-directed Operational Semantics)

• Good as long as the semantics respects a type-preservation principle

Conclusions (& opinions)
• Intrinsic typing is fancy in the perspective of proof engineering

• especially when it’s combined with debruijn intrinsic scoping

• It mixes terms construction with typing proof construction

• is beneficial to saving code and forces you to always consider types

• but reduction rules are messed with proof of type preservation

• I wouldn’t recommend to adopt this technique

• when your calculus is in a experimental phase

• but it’s a nice try to formalise classical ones where required theorems are already clear

Further reading
• Intrinsic typing in Coq (https://github.com/annenkov/stlcnorm)

• Full proof of PCF (PLFA Chapter Debruijn)

• Integration of language constructs (PLFA Chapter More)

• Discussion of bidirectional typing (PLFA Chapter Inference)

• by defining a translate function from extrinsic typing to intrinsic

• Advanced language features (System F in Agda, for fun and profit)

• Parametric polymorphism

• Higher-order types

• Iso-recursive types

https://github.com/annenkov/stlcnorm

Questions

• Q: Worry about more advanced feature, like dependent types?

• Q: Sub constructor previously didn’t appear in the term, but now?

• Q: How to measure the equality of two terms (one term may have two derivations)?

