CONTEXTUAL TYPING

Xu Xue and Bruno C. d. S. Oliveira

The University of Hong Kong

2024-09-05 @ ICFP

Type Inference techniques and what we believe ...

Enviconment [Expr“e,ssion e

— Scalability 1s necessary; better be lightweighf;

- Reasonable and meaningful annotations are ok;

Infer . - .
- Having guidelines for language implementors and

programmers Is good;

- Implementation can be easily derived.

Bidirectional Typing

e Merge type inference and type checking by fwo modes;

e Types are propagated to neighbouring terms;

Inference mode: I Fe=>A

Checkingmode: I Fe< A

Bidirectional Typing: Limited Expressive Power or Backfracking

L 'reg=>A—8B ey & A
The usual application rule: ! ” i App

I'Feje, = B

The usual subsumption rule: lre=4 A=D5 Sub

I're<= B
overlapping

e, => A '+rege &=A—> B

The "unusual" application rule: App2
PP I'-eie & B

Example: T',z:IntF ((Ax.x) 2z): Int

Bidirectional Typing: Still not enough

(Ax. x) 1 . Int

causes more overlapping

Let Arguments Go First

Ningning Xie* and Bruno C. d. S. Oliveira

The University of Hong Kong
{nnxie,bruno}@cs.hku.hk

I'Fey, = A 'V, AFey = A— B

I'YFeieo = B

APP

Bidirectional Typing: Annotatability and Subsumption

e Informal and unclear annotatability (How to annotate a program);

e |nexpressive subsumpftion;

['Feg > A A>B —> C ' e, & B

I'eje, = C

App Intersection Types

Yi-e = A Y- Aee, =— C

YEee=C Decl—E Polymorphic Types

Our Solution: Contextual Typing

e |[t's an iImprovement over bidirectional typing; and it offers
e more expressive power without backtracking;
e easlier annotatability guidelines;

e more expressive subsumption.

Our Solution: Contextual Typing

Comele,‘te,ne_ss E

QTAS Algoﬁ‘t lhwmic Type. Sys‘te,m

(Spe,ci‘ﬁca\tion) I mplew\en‘tox‘tion)

Soundness

e Anno‘to\‘tabil?ty * De,cido&ﬁl?‘ty

' e:A

Quantitative Type Assignment Systems (QTASSs)

e A variant of Type Assignment Systems (TASs); ['H e: A

e Typing is parametrised by counters;
e Counters quantify how much information we know from the context;

e Counters can in different systems;

A“-'OP’NO‘thS’

Counters

All in One Counters

Applica‘tiou Counters

QTAS: All-or-nothing counters and application counters

e All-or-nothing counters are zero (0) and infinity («);

e models modes in bidirectional typing;

No contextual information: ' 5 e: A

Full contextual information: I' =__ e : A

e Application counters have successors (S n);

e quantify how many input types we know from the context.

Partial contextual information: ' F¢ge: A - B

Partial contextual information: ' ¢ ¢pe:A - B - C

10

Quantitative Type Assignment Systems (QTASSs)

DLam DApp?2
F,x:AI—,f'_e:B Fl—(st)ele—>B
[+, Ax.e:/Al— B [Fperex: B

non-zero counter

Towards a Non-Backtracking Algorithm

DAppPT
['toei:A— B [et A
I'tgeje: B
What's the root cause?
DApp?2

FI—(Sn)ele—>B [Fopery t A

Consider two simple cases:

FI—(S,,))Lx.e:A—>B ['Foey : A

(/1)6. 6) €5 » DApp?2

'+, (Ax.e) ey : B

['tFox:A— B ['FH,e A

' g xey: B

X €,

-

DAppPT

12

Application Consumer

e itiseither avariable, a lambda or an annotated term;

e Ifisthe term that will eventually consume the contextual information for the argument;

(Ax. x) ey

((Ax.y) 1) (Az. 2)

DApp2

13

Application Consumer

X

(Ax. x + 1) true

Finding the application consumer tells us the best rule to apply;

but does noft tell us whether the typing will be successful or not!

' Bring arguments and application consumer together

14

Teleporting Typing Judgements

' Teleportation: transport the argument to its application consumer
W

I,x:Ly:I+2:1

C,x:IrFAy.x+y: 1 —1

<4
Lam

Ix:Ir1:1

FFAx. Ady.x+y: 1 —1—1

F'F(Ax. Ay.x+y)1:1—>1

I'2:1

F'F((Ax. Ay.x+y)1)2:1

15

Syntax-directed Algorithmic Type System

e Typing is parametrised by surrounding contfexts (2);

e Surrounding contexts capture the information that is in context for the terms;

e A surrounding context can be empty, full type, or a sequence of terms;

>u=0O|Alle|— 2

16

Syntax-directed Algorithmic Type System

e Terms in contexts are deferred type checking tasks of applications;

['Fley |2 —=>e > A—>B

AAPP
['F2 > e e = B

e Terms in contexts will be carried out to the application consumer: inferred or checked

[FO=>e > A [x:Ar2 =>e =B

ALam?2

'Fle, | X = Ax.e > A —> B

[FO=>9g=> A - A x> [FA=De=C ['FB~x2>

ASub ===l SubTerm
[FE=g=A] [+A— B~[e|— >

annotated term; variable

Metatheory

Soundness (Corollaries):

fITF[0=>e=A, then[Fye: A

Completeness (Corollaries):

fTkye: A thenF[]=e= A

fTHFA=e=Athenk_e:A

fTk_e:Athen FA=e= A

|18

A Calculus with Intersection Types, Overloading and Records

o Introduces subtyping, expressive subsumption; Check Our Paper!

e Models features such as function overloading, record projection;

e More counters: check counters and projection counfers;
e More context: |abels can be appended to the context;

e All the properties: annotatability, decidability, soundness, completeness

19

Our Solution: Contextual Typing

() %)

Complete,ne_ss =
QTAS Algoﬁ'thmic Type_ St/s‘te,m
(Spe,cipico\tion) (Implemen‘tation)
Soundness
<
* Annoto:tabih‘ty * De,cidodpili‘tl/
J
_ W,

Fl—ne:A I'HFX=>e=> A

Quantitative Type Assignment Systems (QTASs)

e A variant of Type Assignment Systems (TASs); ', e:A

e Typing is parametrised by counters;

e Counters quantify how much information we know from the context;

e Counters can in different systems;
4) ~ ™
A“-or‘-No‘thg
Counters
\ / All t
in One Counters
\
Apphca‘tbn Counters

_ Y, _ Y,

https://github.com/juniorxxue/contextual-typing

Formalised in {°f £

Application Consumer

e itis either a variable, a lambda or an annotated term;

e it is the term that will eventually consume the contextual information for the argument;

(Ax. x) ey

((Ax.y) 1) (Az. 2)

gao

Syntax-directed Algorithmic Type System

e Terms in contexts are deferred type checking tasks of applications;

I'Flea | X >e; =>A—>8B

AApp
I'FX=e e =B
e Terms in contexts will be dealt with by application consumer: inferred or checked
''ro=e =>A ILx:ArX=>e=B
ALam2
F'rles | X=>Ax.e >A—> B
'ro=>g=A X #0 A=Y | I''rA=>e=C 'rBrX
ASub = SubTerm
FI'FrX=>9g=A 'rA—>B=x|e|—> X

annotated term; variable

16

QTAS: Annotatability (How to annotate a program)

Quantitative
Type Assignment System

‘l‘ype Assignment System
(TAS)

(QTAS)

e:=i|x|Ax.e|ey e ex=i|x|Ax.e|lerey]e:A

doesn't tell us where to put annotations

Weak Annotatability: If I' = e : A, then de’, 1" -, e’ : A and e is the (type) erasure of €.

Strong Annotatability:
DIfI'Fe:A~e,thenl' F g€ A 2)IfITFe:A~=e)thenl =, (e:A):A.

2]

