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Type Inference techniques and what we believe ...
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→ Scalability is necessary; better be lightweight; 

→ Reasonable and meaningful annotations are ok; 

→ Having guidelines for language implementors and 
programmers is good; 

→ Implementation can be easily derived.



Bidirectional Typing
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• Merge type inference and type checking by two modes; 

• Types are propagated to neighbouring terms;

  Inference mode:   Γ ⊢ e ⇒ A

       Checking mode:   Γ ⊢ e ⇐ A

Why not?



Bidirectional Typing: Limited Expressive Power or Backtracking
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The usual subsumption rule:

Contextual Typing 266:3

� ` 4 , � (Under environment �, 4 can infer ()) the type � or check (() against the type �.)

� ` 8 ( Int
Lit

(G : �) 2 �

� ` G ) �
Var

� ` 4 ) � � = ⌫

� ` 4 ( ⌫
Sub

� ` 4 ( �

� ` (4 : �) ) �
Anno

�, G : � ` 4 ( ⌫

� ` (_G . 4) ( � ! ⌫
Lam

� ` 41 ) � ! ⌫ � ` 42 ( �

� ` 41 42 ) ⌫
App

Fig. 1. Bidirectional typing of STLC. Note that, is a metavariable defined as:, ::= ( | ).

• Contextual typing: A generalization of bidirectional typing, which retains its lightweight-
ness, and enables programs to type check with fewer annotations.

• Quantitative type assignment systems. A variant of type assignment systems, which spec-
i�es the amount of information needed to type check terms, and enables precise annotatability
guidelines to be formalized as theorems.

• A teleportation-based approach for algorithmic typing. To implement a QTAS, we
employ a typing relation that, in addition to a type environment, is also parametrized by a
surrounding context. The surrounding context tracks known contextual type information,
and is used to aid with the propagation (or teleportation) of information across the AST.

• The metatheory for contextual typing. All the calculi and proofs in this paper are formal-
ized in Agda and they are available in the companion artifact [Xue and Oliveira 2024].

• A contextual intersection type system with subtyping, records and overloading,
illustrating how contextual typing scales up to subtyping and some common features.

2 Bidirectional Typing: Some Variants and Limitations
In this section we �rst introduce a standard formulation of bidirectional typing [Dun�eld and
Krishnaswami 2021; Pierce and Turner 2000], and an alternative bidirectional approach called let
arguments go �rst [Xie and Oliveira 2018]. We then discuss limitations of both forms of bidirectional
typing, providing us with the motivation for the contextual typing approach.

2.1 Bidirectional Typing
Bidirectional STLC. To illustrate bidirectional typing, we use the variant of the Simply Typed

Lambda Calculus (STLC) by Dun�eld and Krishnaswami as an example in Fig. 1. The original
calculus uses unit and unit types, which we replace by integers and integer types. This calculus is
designed based on a design recipe by Dun�eld and Pfenning [2004], called the Pfenning recipe. This
recipe gives a guideline on how to bidirectionalize type assignment systems. Intuitively, we �rst �nd
the principal judgment and follow the rules: introduction forms check types, and elimination forms
infer types. The Lit and Var rules are two base rules: 8 can check against the Int type and variable
G can infer the type � by looking up the typing environment �. The checking rule for integers
strictly follows the Pfenning recipe. The subsumption rule Sub switches from checking to inference
mode by comparing the type equality between the inferred and the checked types. The annotation
rule Anno infers the type � from the annotation and uses it to check the term 4 . In the Lam rule, the
lambda term _G . 4 checks against a function type � ! ⌫, and the output type ⌫ will be used to
check the body 4 in an extended environment. The application rule App is the most interesting one.
In order to infer the type of the application, we �rst infer 41’s type and obtain the function type,
then use its input type � to check the argument 42 and use its output type ⌫ as the inference result
of the application. For example, we can infer the type of ((_5 . 5 1) : (� ! � ) ! � ) (_G . G), where
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The "unusual" application rule:
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the annotated lambda expecting a function 5 is applied to a raw lambda (� stands for Int).

. . .

� ` (_5 . 5 1) : (� ! � ) ! � ) (� ! � ) ! �
Anno

. . .

� ` _G . G ( � ! �
Lam

� ` ((_5 . 5 1) : (� ! � ) ! � ) (_G . G) ) �
App

The derivation infers a function type (� ! � ) ! � . The input type � ! � is used to check the
argument _G . G , and the output type � is used as the inference result of the application.

Mode-correctness. The possibility of using two modes for typing brings up the question of when
to use one mode or the other in both the premises and the conclusions. The choices in Fig. 1 are not
unique, and there are several alternative ways to use modes, and still obtain a set of rules that can be
directly implemented as an algorithm. However, there are some choices for the usage of the modes
that are non-algorithmic. It is possible to design bidirectional rules where types need to be guessed.
Dun�eld and Krishnaswami suggest the notion of mode-correctness as a criterion to ensure the
possibility of a bidirectional rule being implementable. Intuitively, we must avoid guessing a type
when we design bidirectional typing rules. When we check the term in the premise by some type,
the type must come from other synthesized terms or the checking type in the conclusion. When
we infer the type of the conclusion, the type should come from synthesized results of premises.
Dun�eld and Krishnaswami identi�ed four di�erent mode-correct application rules. Among those
rules, App1 is the default choice for most bidirectional type systems.

� ` 41 ) � ! ⌫ � ` 42 ( �

� ` 41 42 ) ⌫
App1

� ` 42 ) � � ` 41 ( � ! ⌫

� ` 41 42 ( ⌫
App2

� ` 41 ) � ! ⌫ � ` 42 ) �

� ` 41 42 ) ⌫
App3

� ` 41 ) � ! ⌫ � ` 42 ( �

� ` 41 42 ( ⌫
App4

Note that App3 and App4 can be subsumed by App1 with the subsumption rule, but not App2, which
does add expressive power to the type system. With App2, we can annotate the application and
utilize the inference result of arguments to further check the function. For example, ((_G . G) I) : Int
cannot infer a type for a system with only App1, but type checks with App2 included.

. . .

�, I : Int ` _G . G ( Int ! Int
Lam

(I : Int) 2 �, I : Int
�, I : Int ` I ) Int

Var

�, I : Int ` (_G . G) I ( Int
App2

�, I : Int ` ((_G . G) I) : Int ) Int
Anno

Backtracking. Both App1 and App2 can type check terms that cannot be type checked with the
other rule alone. Thus, one may wonder if it is possible to have both rules in the same type system.
This is possible, and it can be implemented. However, simply adding the App2 rule comes at a cost:
we may need to backtrack when type checking an application. Since the two application rules do
not subsume each other we may need to try both rules for some applications in order to make type
checking work. For instance, when type checking expressions such as (((_5 . 5 1) : (� ! � ) !
� ) (_G . G)) : � , we have to check the application with the type Int. In an implementation, we would
typically give less priority to the subsumption rule, in order to try other checking rules �rst. So,
the natural choice would be to try to use App2 �rst in this case. In this case App2 fails, then we
try the subsumption rule (Sub), and App1 succeeds. Since applications are pervasive in programs,
backtracking is problematic as it can introduce signi�cant slowdowns in the type checker. Thus,
many implementations would avoid having the two rules and would typically prefer App1.
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• Contextual typing: A generalization of bidirectional typing, which retains its lightweight-
ness, and enables programs to type check with fewer annotations.

• Quantitative type assignment systems. A variant of type assignment systems, which spec-
i�es the amount of information needed to type check terms, and enables precise annotatability
guidelines to be formalized as theorems.

• A teleportation-based approach for algorithmic typing. To implement a QTAS, we
employ a typing relation that, in addition to a type environment, is also parametrized by a
surrounding context. The surrounding context tracks known contextual type information,
and is used to aid with the propagation (or teleportation) of information across the AST.

• The metatheory for contextual typing. All the calculi and proofs in this paper are formal-
ized in Agda and they are available in the companion artifact [Xue and Oliveira 2024].

• A contextual intersection type system with subtyping, records and overloading,
illustrating how contextual typing scales up to subtyping and some common features.

2 Bidirectional Typing: Some Variants and Limitations
In this section we �rst introduce a standard formulation of bidirectional typing [Dun�eld and
Krishnaswami 2021; Pierce and Turner 2000], and an alternative bidirectional approach called let
arguments go �rst [Xie and Oliveira 2018]. We then discuss limitations of both forms of bidirectional
typing, providing us with the motivation for the contextual typing approach.

2.1 Bidirectional Typing
Bidirectional STLC. To illustrate bidirectional typing, we use the variant of the Simply Typed

Lambda Calculus (STLC) by Dun�eld and Krishnaswami as an example in Fig. 1. The original
calculus uses unit and unit types, which we replace by integers and integer types. This calculus is
designed based on a design recipe by Dun�eld and Pfenning [2004], called the Pfenning recipe. This
recipe gives a guideline on how to bidirectionalize type assignment systems. Intuitively, we �rst �nd
the principal judgment and follow the rules: introduction forms check types, and elimination forms
infer types. The Lit and Var rules are two base rules: 8 can check against the Int type and variable
G can infer the type � by looking up the typing environment �. The checking rule for integers
strictly follows the Pfenning recipe. The subsumption rule Sub switches from checking to inference
mode by comparing the type equality between the inferred and the checked types. The annotation
rule Anno infers the type � from the annotation and uses it to check the term 4 . In the Lam rule, the
lambda term _G . 4 checks against a function type � ! ⌫, and the output type ⌫ will be used to
check the body 4 in an extended environment. The application rule App is the most interesting one.
In order to infer the type of the application, we �rst infer 41’s type and obtain the function type,
then use its input type � to check the argument 42 and use its output type ⌫ as the inference result
of the application. For example, we can infer the type of ((_5 . 5 1) : (� ! � ) ! � ) (_G . G), where
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the annotated lambda expecting a function 5 is applied to a raw lambda (� stands for Int).

. . .

� ` (_5 . 5 1) : (� ! � ) ! � ) (� ! � ) ! �
Anno

. . .

� ` _G . G ( � ! �
Lam

� ` ((_5 . 5 1) : (� ! � ) ! � ) (_G . G) ) �
App

The derivation infers a function type (� ! � ) ! � . The input type � ! � is used to check the
argument _G . G , and the output type � is used as the inference result of the application.

Mode-correctness. The possibility of using two modes for typing brings up the question of when
to use one mode or the other in both the premises and the conclusions. The choices in Fig. 1 are not
unique, and there are several alternative ways to use modes, and still obtain a set of rules that can be
directly implemented as an algorithm. However, there are some choices for the usage of the modes
that are non-algorithmic. It is possible to design bidirectional rules where types need to be guessed.
Dun�eld and Krishnaswami suggest the notion of mode-correctness as a criterion to ensure the
possibility of a bidirectional rule being implementable. Intuitively, we must avoid guessing a type
when we design bidirectional typing rules. When we check the term in the premise by some type,
the type must come from other synthesized terms or the checking type in the conclusion. When
we infer the type of the conclusion, the type should come from synthesized results of premises.
Dun�eld and Krishnaswami identi�ed four di�erent mode-correct application rules. Among those
rules, App1 is the default choice for most bidirectional type systems.

� ` 41 ) � ! ⌫ � ` 42 ( �

� ` 41 42 ) ⌫
App1

� ` 42 ) � � ` 41 ( � ! ⌫

� ` 41 42 ( ⌫
App2

� ` 41 ) � ! ⌫ � ` 42 ) �

� ` 41 42 ) ⌫
App3

� ` 41 ) � ! ⌫ � ` 42 ( �

� ` 41 42 ( ⌫
App4

Note that App3 and App4 can be subsumed by App1 with the subsumption rule, but not App2, which
does add expressive power to the type system. With App2, we can annotate the application and
utilize the inference result of arguments to further check the function. For example, ((_G . G) I) : Int
cannot infer a type for a system with only App1, but type checks with App2 included.

. . .

�, I : Int ` _G . G ( Int ! Int
Lam

(I : Int) 2 �, I : Int
�, I : Int ` I ) Int

Var

�, I : Int ` (_G . G) I ( Int
App2

�, I : Int ` ((_G . G) I) : Int ) Int
Anno

Backtracking. Both App1 and App2 can type check terms that cannot be type checked with the
other rule alone. Thus, one may wonder if it is possible to have both rules in the same type system.
This is possible, and it can be implemented. However, simply adding the App2 rule comes at a cost:
we may need to backtrack when type checking an application. Since the two application rules do
not subsume each other we may need to try both rules for some applications in order to make type
checking work. For instance, when type checking expressions such as (((_5 . 5 1) : (� ! � ) !
� ) (_G . G)) : � , we have to check the application with the type Int. In an implementation, we would
typically give less priority to the subsumption rule, in order to try other checking rules �rst. So,
the natural choice would be to try to use App2 �rst in this case. In this case App2 fails, then we
try the subsumption rule (Sub), and App1 succeeds. Since applications are pervasive in programs,
backtracking is problematic as it can introduce signi�cant slowdowns in the type checker. Thus,
many implementations would avoid having the two rules and would typically prefer App1.
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Bidirectional Typing: Still not enough
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(λx . x) 1
① Int

③ Int

② Int

Let Arguments Go First

Ningning Xie and Bruno C. d. S. Oliveira

The University of Hong Kong
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Abstract. Bi-directional type checking has proved to be an extremely

useful and versatile tool for type checking and type inference. The con-

ventional presentation of bi-directional type checking consists of two

modes: inference mode and checked mode. In traditional bi-directional

type-checking, type annotations are used to guide (via the checked mode)

the type inference/checking procedure to determine the type of an ex-

pression, and type information flows from functions to arguments.
This paper presents a variant of bi-directional type checking where the

type information flows from arguments to functions. This variant retains
the inference mode, but adds a so-called application mode. Such design

can remove annotations that basic bi-directional type checking cannot,

and is useful when type information from arguments is required to type-

check the functions being applied. We present two applications and de-

velop the meta-theory (mostly verified in Coq) of the application mode.

1 Introduction

Bi-directional type checking has been known in the folklore of type systems
for a long time. It was popularized by Pierce and Turner’s work on local type
inference [29]. Local type inference was introduced as an alternative to Hindley-
Milner (henceforth HM system) type systems [11, 17], which could easily deal
with polymorphic languages with subtyping. Bi-directional type checking is one
component of local type inference that, aided by some type annotations, en-
ables type inference in an expressive language with polymorphism and subtyp-
ing. Since Pierce and Turner’s work, various other authors have proved the ef-
fectiveness of bi-directional type checking in several other settings, including
many di↵erent systems with subtyping [12, 15, 14], systems with dependent
types [37, 10, 2, 21, 3], and various other works [1, 13, 28, 7, 22]. Furthermore,
bi-directional type checking has also been combined with HM-style techniques
for providing type inference in the presence of higher-ranked types [27, 14].

The key idea in bi-directional type checking is simple. In its basic form typing
is split into inference and checked modes. The most salient feature of a bi-
directional type-checker is when information deduced from inference mode is
used to guide checking of an expression in checked mode. One of such interactions
between modes happens in the typing rule for function applications:

� ` e1 ) A ! B � ` e2 ( A

� ` e1 e2 ) B
APP

4

This shows one drawback of bi-directional type checking: often to minimize anno-
tations, many rules are duplicated for having both inference and checked mode,
which scales up with the typing rules in a type system.

2.2 Bi-Directional Type Checking with the Application Mode

We propose a variant of bi-directional type checking with a new application mode.
The application mode preserves the advantage of bi-directional type checking,
namely many redundant annotations are removed, while certain programs can
type check with even fewer annotations. Also, with our proposal, the inference
mode is a special case of the application mode, so it does not produce duplications
of rules in the type system. Additionally, the checked mode can still be easily
combined into the system (see Section 5.1 for details). The essential idea of
the application mode is to enable the type information flow in applications to
propagate from arguments to functions (instead of from functions to arguments
as in traditional bi-directional type checking).

To motivate the design of bi-directional type checking with an application
mode, consider the simple expression

(�x. x) 1

This expression cannot type check in traditional bi-directional type checking
because unannotated abstractions only have a checked mode, so annotations are
required. For example, ((�x. x) : Int ! Int) 1.

In this example we can observe that if the type of the argument is accounted
for in inferring the type of �x. x, then it is actually possible to deduce that the
lambda expression has type Int ! Int , from the argument 1.

The Application Mode. If types flow from the arguments to the function, an
alternative idea is to push the type of the arguments into the typing of the
function, as the rule that is briefly introduced in Section 1:

� ` e2 ) A � p  , A ` e1 ) A ! B

� p  ` e1 e2 ) B
APP

Here the argument e2 synthesizes its type A, which then is pushed into the
application context  . Lambda expressions can now make use of the application
context, leading to the following rule:

�, x : A p  ` e ) B

� p  , A ` �x. e ) A ! B
Lam

The type A that appears last in the application context serves as the type for x,
and type checking continues with a smaller application context and x:A in the
typing context. Therefore, using the rule App and Lam, the expression (�x.

x) 1 can type-check without annotations, since the type Int of the argument 1

is used as the type of the binding x.

causes more overlapping



Bidirectional Typing: Annotatability and Subsumption
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• Informal and unclear annotatability (How to annotate a program); 

• Inexpressive subsumption;

Contextual Typing 266:7

In this case, we must either put annotations on the body of let, then use LetInf to infer the type
of the let expression, or around the let expression to use the contextual information to check its
body. Thus, for some bidirectional type systems with binding constructs, it may not be easy to give
programmers a clear guideline as to where to place annotations.

2.4 Subtyping
In calculi with subtyping, an important idea is that the subsumption rule is used to encapsulate the
uses of subtyping in a single place. This is commonly used in type assignment systems (TASs), and
also in (simple) bidirectional type systems. The bidirectional rule for subtyping is analogous to rule
Sub in Fig 1, with type equality replaced with subtyping.

� ` 4 ) � � <: ⌫
� ` 4 ( ⌫

Sub

However, in the presence of more complex subtyping relations, the bidirectional subsumption
rule is not powerful enough to encapsulate many of the desired uses of subtyping. For instance,
intersection types [Barendregt et al. 1983; Coppo et al. 1981; Pottinger 1980; Reynolds 1991] are
used to assign multiple types to one expression. Type systems with intersection types often use
three subtyping rules to characterize this idea:

� <: ⇠
� & ⌫ <: ⇠

SAndL

⌫ <: ⇠
� & ⌫ <: ⇠

SAndR

� <: ⌫ � <: ⇠
� <: ⌫ & ⇠

SAnd

If we use rule App1, and the bidirectional subsumption rule, then some programs that we expect
to type check, would no longer type check. For instance, (_5 . 5 1) : ((� ! � ) & (� ! � )) ! � (�
stands for the Float type) is a higher order function that expects an overloaded function with the
intersection type (� ! � ) & (� ! � ). This function cannot type check using the App1 rule:

5 : (� ! � ) & (� ! � ) ` 5 ) (� ! � ) & (� ! � ) 5 : (� ! � ) & (� ! � ) ` 1 ( ?
5 : (� ! � ) & (� ! � ) ` 5 1 ) ?

App1Fail

In the rule App1, the function 41 is expected to have function type� ! ⌫, instead of the intersection
type in this case. Thus, rule App1 will reject this program. In contrast, the equivalent TAS would
accept the program above. A possible solution is to modify the application rule as follows:

� ` 41 ) � � <: ⌫ ! ⇠ � ` 42 ( ⌫

� ` 41 42 ) ⇠
App

This rule allows for a more �exible form of application, that solves our problem, since it accounts
for subtyping and for types that are subtypes of functions. However, there are two issues with
this rule. The �rst one is that the rule gives up the principle of encapsulating uses of subtyping
in the subsumption rule. The second one is that the rule is non-algorithmic (since the type ⌫ is
guessed). The second issue is solvable by creating specialized relations that avoid guessing ⌫ and
thus can be implemented in an algorithm. This is currently the standard solution for this problem in
calculi with bidirectional typing. In calculi with intersection types, a selection/matching judgment
is introduced in the application rules [Davies and Pfenning 2000; Huang et al. 2021]:

� ` 41 ) � � ù ⌫ ! ⇠ � ` 42 ( ⌫

� ` 41 42 ) ⇠
App

The selection judgment � ù ⌫ ! ⇠ simply tries to select one instance from di�erent branches of
intersection types. The selection judgment should, ideally, be sound and complete to � <: ⌫ ! ⇠ .
Although this approach addresses the algorithmic problem, it requires modifying the standard

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 266. Publication date: August 2024.

Intersection Types

Ψ ⊢ e ⇐ A Under context Ψ, e checks against input type A

Ψ ⊢ e ⇒ A Under context Ψ, e synthesizes output type A

Ψ ⊢ A • e ⇒⇒ C Under context Ψ, applying a function of type A to e synthesizes type C

(x : A) ∈ Ψ

Ψ ⊢ x ⇒ A
DeclVar

Ψ ⊢ e ⇒ A Ψ ⊢ A ≤ B

Ψ ⊢ e ⇐ B
DeclSub

Ψ ⊢ A Ψ ⊢ e ⇐ A

Ψ ⊢ (e : A) ⇒ A
DeclAnno

Ψ ⊢ () ⇐ 1
Decl1I

Ψ ⊢ () ⇒ 1
Decl1I⇒

Ψ,α ⊢ e ⇐ A

Ψ ⊢ e ⇐ ∀α. A
Decl∀I

Ψ ⊢ τ Ψ ⊢ [τ/α]A • e ⇒⇒ C

Ψ ⊢ ∀α. A • e ⇒⇒ C
Decl∀App

Ψ, x : A ⊢ e ⇐ B

Ψ ⊢ λx. e ⇐ A → B
Decl→I

Ψ ⊢ σ → τ Ψ, x : σ ⊢ e ⇐ τ

Ψ ⊢ λx. e ⇒ σ → τ
Decl→I⇒

Ψ ⊢ e1 ⇒ A Ψ ⊢ A • e2 ⇒⇒ C

Ψ ⊢ e1 e2 ⇒ C
Decl→E

Ψ ⊢ e ⇐ A

Ψ ⊢ A → C • e ⇒⇒ C
Decl→App

Figure 4. Declarative typing

the fundamental algorithmic problem in extending bidirectional
typechecking to polymorphism is precisely the problem of figuring
out what the missing type applications are.

Preserving the η-rule for functions comes at a cost. The sub-
typing relation induced by instantiation is undecidable for im-
predicative polymorphism (Tiuryn and Urzyczyn 1996; Chrząszcz
1998). Since we want a complete typechecking algorithm, we con-
sequently restrict our system to predicative polymorphism, where
polymorphic quantifiers can be instantiated only with monomor-
phic types. We discuss alternatives in Section 9.

2.1 Typing in Detail

Language overview. In Figure 1, we give the grammar for our
language. We have a unit term (), variables x, lambda-abstraction
λx. e, application e1 e2, and type annotation (e : A). We write A,
B, C for types (Figure 2): types are the unit type 1, type variables α,
universal quantification ∀α. A, and functions A → B. Monotypes
τ and σ are the same, less the universal quantifier. Contexts Ψ
are lists of type variable declarations, and term variables x : A,
with the expected well-formedness condition. (We give a single-
context formulation mixing type and term hypotheses to simplify
the presentation.)

Checking, synthesis, and application. Our type system has three
main judgments, given in Figure 4. The checking judgment Ψ ⊢
e ⇐ A asserts that e checks against the type A in the context Ψ.
The synthesis judgment Ψ ⊢ e ⇒ A says that we can synthesize
the type A for e in the context Ψ. Finally, an application judgment
Ψ ⊢ A • e ⇒⇒ C says that if a (possibly polymorphic) function
of type A is applied to argument e, then the whole application
synthesizes C for the whole application.

As is standard in the proof-theoretic presentations of bidirec-
tional typechecking, each of the introduction forms in our calculus
has a corresponding checking rule. The Decl1I rule says that ()
checks against the unit type 1. The Decl→I rule says that λx. e
checks against the function type A → B if e checks against B with
the additional hypothesis that x has type A. The Decl∀I rule says
that e has type ∀α. A if e has type A in a context extended with a
fresh α.1 Sums, products and recursive types can be added similarly
(we leave them out for simplicity). Rule DeclSub mediates between

1 Note that we do not require an explicit type abstraction operation. As a
result, an implementation needs to use some technique like scoped type
variables (Peyton Jones and Shields 2004) to mention bound type variables
in annotations. This point does not matter to the abstract syntax, though.

synthesis and checking: it says that e can be checked against B, if
e synthesizes A and A is a subtype of B (that is, A is at least as
polymorphic as B).

As expected, we can infer a type for a variable (the DeclVar
rule) just by looking it up in the context. Likewise, the DeclAnno
rule says that we can synthesize a type A for a term with a type
annotation (e : A) just by returning that type (after checking that
the term does actually check against A).

Application is a little more complex: we have to eliminate
universals until we reach an arrow type. To do this, we use an
application judgment Ψ ⊢ A • e ⇒⇒ C, which says that if we
apply a term of type A to an argument e, we get something of type
C. This judgment works by guessing instantiations of polymorphic
quantifiers in rule Decl∀App. Once we have instantiated enough
quantifiers to expose an arrow A → C, we check e against A and
return C in rule Decl→App.

In the following example, where we are applying some function
polymorphic in α, Decl∀App instantiates the outer quantifier (to
the unit type 1; we elide the premise Ψ ⊢ 1), but leaves the inner
quantifier over β alone.

Ψ ⊢ x ⇐ (∀β. β→β)

Ψ ⊢ (∀β. β→β) → 1 → 1 • x ⇒⇒ 1 → 1
Decl→App

Ψ ⊢
(

∀α. (∀β. β→β) → α → α
)

• x ⇒⇒ 1 → 1
Decl∀App

In the minimal proof-theoretic formulation of bidirectional-
ity (Davies and Pfenning 2000; Dunfield and Pfenning 2004), in-
troduction forms are checked and elimination forms synthesize,
full stop. Even () cannot synthesize its type! Actual bidirectional
typecheckers tend to take a more liberal view, adding synthesis
rules for at least some introduction forms. To show that our system
can accommodate these kinds of extensions, we add the Decl1I⇒
and Decl→I⇒ rules, which synthesize a unit type for () and a
monomorphic function type for lambda expressions λx. e. We ex-
amine other variations, including a purist bidirectional no-inference
alternative, and a liberal Damas-Milner alternative, in Section 8.

Instantiating types. We express the fact that one type is a poly-
morphic generalization of another by means of the subtyping judg-
ment given in Figure 3. One important aspect of the judgment is
that types are compared relative to a context of free variables. This
simplifies our rules, by letting us eliminate the awkward side con-
ditions on sets of free variables that plague many presentations.
Most of the subtyping judgment is typical: it proceeds structurally
on types, with a contravariant twist for the arrow; all the real ac-
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• It's an improvement over bidirectional typing; and it offers 

• more expressive power without backtracking; 

• easier annotatability guidelines; 

• more expressive subsumption.
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Γ ⊢n e : A Γ ⊢ Σ ⇒ e ⇒ A
Counter Context
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• A variant of Type Assignment Systems (TASs); 

• Typing is parametrised by counters; 

• Counters quantify how much information we know from the context; 

• Counters can vary in different systems;

Γ ⊢n e : A
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• All-or-nothing counters are zero (0) and infinity (∞); 

• models modes in bidirectional typing;

  No contextual information:   Γ ⊢0 e : A

  Full contextual information:   Γ ⊢∞ e : A

  Partial contextual information:   Γ ⊢S 0 e : A → B

QTAS: All-or-nothing counters and application counters

• Application counters have successors (S n); 

• quantify how many input types we know from the context.

  Partial contextual information:   Γ ⊢S S 0 e : A → B → C
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Fig. 5. All-in-one QTAS for STLC.
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DApp1

� `0 let I = 1 in (_5 . 5 1 : ((� ! � ) ! � )) (let G = I in (_~ . ~)) : �
Let

Fig. 6. Typing derivation for the motivating example in Section 2.2.

41 infers the type � ! ⌫, then we have all the information available for the argument, and can
use that to check whether 42 has type �. In rule DApp2, if the argument 42 infers the type �, we
increment the counter for the function, since we have all the type information for the argument.
Thus 41 can have the type � ! ⌫ with additional contextual information. Note that DApp2 merges
the expressiveness of rules App2 and AppS. Thus, we only need two rules, instead of three. As
before, DSub expresses that additional contextual information does not a�ect typeability.
We show that our all-in-one QTAS is complete with respect to both traditional bidirectional

typing (including rule App2 and integer inference) and application modes. Note that we allow
successor wrapping around 1. Thus we use a relation w that relates modes to counters.

)w 0
w0

(w 1
w1

(w =

(w ( =
wS

T������ 3.5 (C�����������).
• If � ` 4 , � and,w=, then � `= 4 : �. • If � p  ` 4 ) � and =⇠ ⇠ �, then � `= 4 : �.

Encoding let expressions. Like the approach by Xie and Oliveira [2018], we can encode let

expressions as syntactic sugar. The following derivation shows the derivable typing rule for let
expressions (from the syntactic sugar):

� `0 41 : � �, G : � `= 42 : ⌫
� `= let G = 41 in 42 : ⌫

Let

�, G : � `= 42 : ⌫
� `( = _G . 42 : � ! ⌫

DLam

� `0 41 : �
� `= (_G . 42) 41 : ⌫

DApp2

On the left we present the derived rule and on the right we desugar the let expression to show how
the rule can be derived. This rule subsumes the two bidirectional typing rules for let expressions
presented in Section 2.3. The inference rule corresponds to = being 0 and the checking rule corre-
sponds to = being1. Moreover, = can also be ( =0, which has no correspondence in the bidirectional
rules. Figure 6 illustrates the expressiveness of the QTAS with our example in Section 2.2, which
requires the power of the three application rules.

A remark and a closer look at counters. An important remark here is that the STLC allows for a
simple formulation of counters. As we shall see in Section 5, in more complex calculi, we may need

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 266. Publication date: August 2024.

Contextual Typing 266:11

DAnn

� `1 4 : �
� `0 (4 : �) : �

DLam

�, G : � `=� 4 : ⌫
� `= _G . 4 : � ! ⌫

DApp1

� `0 41 : � ! ⌫ � `1 42 : �
� `0 41 42 : ⌫

DLit

� `0 8 : Int

DVar

G : � 2 �
� `0 G : �

DSub

� `0 4 : � = < 0
� `= 4 : �

DApp2

� `(( =) 41 : � ! ⌫ � `0 42 : �
� `= 41 42 : ⌫

Fig. 5. All-in-one QTAS for STLC.

� `0 1 : �

�, I : � `0 I : �
. . .

�, I : � , G : � `1 _~ . ~ : � ! �
DLam

. . . �, I : � `1 let G = I in (_~ . ~) : � ! �
Let

�, I : � `0 (_5 . 5 1 : ((� ! � ) ! � )) (let G = I in (_~ . ~)) : �
DApp1

� `0 let I = 1 in (_5 . 5 1 : ((� ! � ) ! � )) (let G = I in (_~ . ~)) : �
Let

Fig. 6. Typing derivation for the motivating example in Section 2.2.

41 infers the type � ! ⌫, then we have all the information available for the argument, and can
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the expressiveness of rules App2 and AppS. Thus, we only need two rules, instead of three. As
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Encoding let expressions. Like the approach by Xie and Oliveira [2018], we can encode let
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On the left we present the derived rule and on the right we desugar the let expression to show how
the rule can be derived. This rule subsumes the two bidirectional typing rules for let expressions
presented in Section 2.3. The inference rule corresponds to = being 0 and the checking rule corre-
sponds to = being1. Moreover, = can also be ( =0, which has no correspondence in the bidirectional
rules. Figure 6 illustrates the expressiveness of the QTAS with our example in Section 2.2, which
requires the power of the three application rules.

A remark and a closer look at counters. An important remark here is that the STLC allows for a
simple formulation of counters. As we shall see in Section 5, in more complex calculi, we may need

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 266. Publication date: August 2024.

non-zero counter



Towards a Non-Backtracking Algorithm

12

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Contextual Typing 111:11

DAnn

� `1 4 : �
� `0 (4 : �) : �

DLam

�, G : � `=� 4 : ⌫
� `= _G . 4 : � ! ⌫

DApp1

� `0 41 : � ! ⌫ � `1 42 : �
� `0 41 42 : ⌫

DLit

� `0 8 : Int

DVar

G : � 2 �
� `0 G : �

DSub

� `0 4 : � = < 0
� `= 4 : �

DApp2

� `(( =) 41 : � ! ⌫ � `0 42 : �
� `= 41 42 : ⌫

Fig. 5. All-in-one QTAS for STLC.

Expressions 4 ::= 8 | G | _G . 4 | 41 42 | 4 : �
Counters = ::= 0 | 1 | ( =
Syntactic Sugar let G = 41 in 42 , (_G . 42) 41

We present our typing rules in Fig. 5. DLit and DVar are unsurprising. In rule DAnn the annotated
term 4 : � is typeable with type � without any additional contextual type information, if 4 is
typeable with � with full contextual information. DLam type checks a lambda only when the
counter can be decreased, which means that the information for the input type � must be available
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The lambda body (4) may itself require some amount of contextual information =. For instance, the
lambda term _G . _~. G +~ is typeable if the counter is at least 2: the lambda body _~ . G +~ requires
type information for ~, whereas the outer lambda requires type information for G . Rules DApp1
and DApp2 describe two situations: whether the function can infer or the argument can infer. We
use the word infer here to represent the situation where the counter is 0. In DApp1, if the function
41 infers the type � ! ⌫, then we have all the information available for the argument, and can
use that to check whether 42 has type �. In rule DApp2, if the argument 42 infers the type �, we
increment the counter for the function, since we have all the type information for the argument.
Thus 41 can have the type � ! ⌫ with additional contextual information. Note that DApp2 merges
the expressiveness of rules App2 and AppS. Thus, we only need two rules, instead of three. As
before, DSub expresses that additional contextual information does not a�ect typeability.
We show that our all-in-one QTAS is complete with respect to both traditional bidirectional

typing (including rule App2 and integer inference) and application modes. Note that we allow
successor wrapping around 1. Thus we use a relation w that relates modes to counters.
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Encoding let expressions. Like the approach by Xie and Oliveira [2018], we can encode let

expressions as syntactic sugar. The following derivation shows the derivable typing rule for let
expressions (from the syntactic sugar):

� `0 41 : � �, G : � `= 42 : ⌫
� `= let G = 41 in 42 : ⌫

Let

�, G : � `= 42 : ⌫
� `( = _G . 42 : � ! ⌫
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On the left we present the derived rule and on the right we desugar the let expression to show how
the rule can be derived. This rule subsumes the two bidirectional typing rules for let expressions

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

What's the root cause?

Consider two simple cases:
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Our goal is to have the same expressive power as the QTAS without using backtracking. When
designing the QTAS we already saw that App2 and AppS can be combined into a single rule (DApp2),
which removes some of the overlap between the application rules. However, we still have two
application rules and there are some types being guessed. Thus, in order to �nd a non-backtracking
algorithmic formulation, we must overcome these two problems �rst. To do so, it is helpful to
analyse the root cause of backtracking. For this we �rst identify when we need to use DApp1

and DApp2. Let us consider two special cases in an application 41 42: the function 41 is a lambda
abstraction _G . 4; or the function 41 is a variable G . For these two cases we can clearly identify
which rule is better:

� `(( =) _G . 4 : � ! ⌫ � `0 42 : �
� `= (_G . 4) 42 : ⌫

DApp2

� `0 G : � ! ⌫ � `= 42 : �
� `0 G 42 : ⌫

DApp1

When 41 is a lambda abstraction _G . 4 , DApp1 will never succeed because _G . 4 is not typeable
without contextual information. Thus, the only rule that we can use in this case is DApp2 which, if
it successfully infers a type for 42, can then try to infer the type for the abstraction. When 41 is
a variable G it is not too di�cult to see that DApp1 is always a better rule to use, since the type
of variables can always be inferred. So using DApp1 instead of DApp2 will lead to strictly more
successful typing derivations. One other case that is similar to variables is when 41 is an annotation
expression 4 : �. In this case, DApp1 is also the best choice. For the cases that we have analysed it
seems that we can pick the best application rule, based on the syntactic structure of 41. This is true,
but 41 can, in the general case, have more complex shapes, and those have to be dealt with as well.

Application consumer. An application consumer is either a variable, a lambda or an annotated
term. The three cases in an application consumer capture the three cases that we analysed so far.
For an application 41 42 what we are looking for is the application consumer for 42. That is, the term
that will eventually consume the contextual information for the argument. In direct applications,
such as (_G . G) 42, the application consumer is just 41 (_G . G in this case). In the general case the
consumer may lie deep within 41. Consider the application ((_G . ~) 1) (_I . I). Here ~ is a variable,
with the type (� ! � ) ! � in the typing environment. Note that this term is typeable if we use
DApp1 for the outer application and DApp2 for the inner application. In this case ~ is the consumer
that determines which application rule to use to type check the outer application (for the argument
_I. I). We should choose DApp1, since the application consumer is a variable (~). Conversely, for the
inner application we should use DApp2 since the application consumer is _G . ~. A second example
is (_G . _~ . G +~) 1 2, where the consumer for 2 is _~ . G +~ and the consumer for 1 is (_G . _~ . G +~).

To design an e�cient algorithm the notion of application consumer is useful, since the consumer
determines the best application rule to use. Therefore, once we know what is the best rule, we do
not need to try any other rules. A backtracking algorithm does not attempt to choose the best rule
to apply. Instead, it simply blindly tries each rule and, if some rule fails, it tries another one. To
�nd the best rule to apply, one possibility is to analyse the structure of the application to decide
which rule to apply. In other words we could look into an application 41 42 and �nd the consumer
for 42. Then, using the information about the consumer, we could decide which rule use in the
application. Nonetheless this approach still requires us to do multiple traversals on 41: traversing
41 to determine the syntactic form of the application consumer; and traversing 41 again to actually
type check the application. However, it is possible to do better, and traverse 41 only one time.

4.2 Key Idea: Teleporting Typing Judgements
Knowing about the syntactic form of the application consumer determines what application rule
is best to use, but it does not determine whether typing will be successful or not. For instance,
we could have the ill-typed application (_G . G + 1) true, for which we could determine that
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Our goal is to have the same expressive power as the QTAS without using backtracking. When
designing the QTAS we already saw that App2 and AppS can be combined into a single rule (DApp2),
which removes some of the overlap between the application rules. However, we still have two
application rules and there are some types being guessed. Thus, in order to �nd a non-backtracking
algorithmic formulation, we must overcome these two problems �rst. To do so, it is helpful to
analyse the root cause of backtracking. For this we �rst identify when we need to use DApp1

and DApp2. Let us consider two special cases in an application 41 42: the function 41 is a lambda
abstraction _G . 4; or the function 41 is a variable G . For these two cases we can clearly identify
which rule is better:
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When 41 is a lambda abstraction _G . 4 , DApp1 will never succeed because _G . 4 is not typeable
without contextual information. Thus, the only rule that we can use in this case is DApp2 which, if
it successfully infers a type for 42, can then try to infer the type for the abstraction. When 41 is
a variable G it is not too di�cult to see that DApp1 is always a better rule to use, since the type
of variables can always be inferred. So using DApp1 instead of DApp2 will lead to strictly more
successful typing derivations. One other case that is similar to variables is when 41 is an annotation
expression 4 : �. In this case, DApp1 is also the best choice. For the cases that we have analysed it
seems that we can pick the best application rule, based on the syntactic structure of 41. This is true,
but 41 can, in the general case, have more complex shapes, and those have to be dealt with as well.

Application consumer. An application consumer is either a variable, a lambda or an annotated
term. The three cases in an application consumer capture the three cases that we analysed so far.
For an application 41 42 what we are looking for is the application consumer for 42. That is, the term
that will eventually consume the contextual information for the argument. In direct applications,
such as (_G . G) 42, the application consumer is just 41 (_G . G in this case). In the general case the
consumer may lie deep within 41. Consider the application ((_G . ~) 1) (_I . I). Here ~ is a variable,
with the type (� ! � ) ! � in the typing environment. Note that this term is typeable if we use
DApp1 for the outer application and DApp2 for the inner application. In this case ~ is the consumer
that determines which application rule to use to type check the outer application (for the argument
_I. I). We should choose DApp1, since the application consumer is a variable (~). Conversely, for the
inner application we should use DApp2 since the application consumer is _G . ~. A second example
is (_G . _~ . G +~) 1 2, where the consumer for 2 is _~ . G +~ and the consumer for 1 is (_G . _~ . G +~).

To design an e�cient algorithm the notion of application consumer is useful, since the consumer
determines the best application rule to use. Therefore, once we know what is the best rule, we do
not need to try any other rules. A backtracking algorithm does not attempt to choose the best rule
to apply. Instead, it simply blindly tries each rule and, if some rule fails, it tries another one. To
�nd the best rule to apply, one possibility is to analyse the structure of the application to decide
which rule to apply. In other words we could look into an application 41 42 and �nd the consumer
for 42. Then, using the information about the consumer, we could decide which rule use in the
application. Nonetheless this approach still requires us to do multiple traversals on 41: traversing
41 to determine the syntactic form of the application consumer; and traversing 41 again to actually
type check the application. However, it is possible to do better, and traverse 41 only one time.

4.2 Key Idea: Teleporting Typing Judgements
Knowing about the syntactic form of the application consumer determines what application rule
is best to use, but it does not determine whether typing will be successful or not. For instance,
we could have the ill-typed application (_G . G + 1) true, for which we could determine that
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• it is either a variable, a lambda or an annotated term; 

• it is the term that will eventually consume the contextual information for the argument;
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Our goal is to have the same expressive power as the QTAS without using backtracking. When
designing the QTAS we already saw that App2 and AppS can be combined into a single rule (DApp2),
which removes some of the overlap between the application rules. However, we still have two
application rules and there are some types being guessed. Thus, in order to �nd a non-backtracking
algorithmic formulation, we must overcome these two problems �rst. To do so, it is helpful to
analyse the root cause of backtracking. For this we �rst identify when we need to use DApp1

and DApp2. Let us consider two special cases in an application 41 42: the function 41 is a lambda
abstraction _G . 4; or the function 41 is a variable G . For these two cases we can clearly identify
which rule is better:

� `(( =) _G . 4 : � ! ⌫ � `0 42 : �
� `= (_G . 4) 42 : ⌫

DApp2

� `0 G : � ! ⌫ � `= 42 : �
� `0 G 42 : ⌫

DApp1

When 41 is a lambda abstraction _G . 4 , DApp1 will never succeed because _G . 4 is not typeable
without contextual information. Thus, the only rule that we can use in this case is DApp2 which, if
it successfully infers a type for 42, can then try to infer the type for the abstraction. When 41 is
a variable G it is not too di�cult to see that DApp1 is always a better rule to use, since the type
of variables can always be inferred. So using DApp1 instead of DApp2 will lead to strictly more
successful typing derivations. One other case that is similar to variables is when 41 is an annotation
expression 4 : �. In this case, DApp1 is also the best choice. For the cases that we have analysed it
seems that we can pick the best application rule, based on the syntactic structure of 41. This is true,
but 41 can, in the general case, have more complex shapes, and those have to be dealt with as well.

Application consumer. An application consumer is either a variable, a lambda or an annotated
term. The three cases in an application consumer capture the three cases that we analysed so far.
For an application 41 42 what we are looking for is the application consumer for 42. That is, the term
that will eventually consume the contextual information for the argument. In direct applications,
such as (_G . G) 42, the application consumer is just 41 (_G . G in this case). In the general case the
consumer may lie deep within 41. Consider the application ((_G . ~) 1) (_I . I). Here ~ is a variable,
with the type (� ! � ) ! � in the typing environment. Note that this term is typeable if we use
DApp1 for the outer application and DApp2 for the inner application. In this case ~ is the consumer
that determines which application rule to use to type check the outer application (for the argument
_I. I). We should choose DApp1, since the application consumer is a variable (~). Conversely, for the
inner application we should use DApp2 since the application consumer is _G . ~. A second example
is (_G . _~ . G +~) 1 2, where the consumer for 2 is _~ . G +~ and the consumer for 1 is (_G . _~ . G +~).

To design an e�cient algorithm the notion of application consumer is useful, since the consumer
determines the best application rule to use. Therefore, once we know what is the best rule, we do
not need to try any other rules. A backtracking algorithm does not attempt to choose the best rule
to apply. Instead, it simply blindly tries each rule and, if some rule fails, it tries another one. To
�nd the best rule to apply, one possibility is to analyse the structure of the application to decide
which rule to apply. In other words we could look into an application 41 42 and �nd the consumer
for 42. Then, using the information about the consumer, we could decide which rule use in the
application. Nonetheless this approach still requires us to do multiple traversals on 41: traversing
41 to determine the syntactic form of the application consumer; and traversing 41 again to actually
type check the application. However, it is possible to do better, and traverse 41 only one time.

4.2 Key Idea: Teleporting Typing Judgements
Knowing about the syntactic form of the application consumer determines what application rule
is best to use, but it does not determine whether typing will be successful or not. For instance,
we could have the ill-typed application (_G . G + 1) true, for which we could determine that
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Our goal is to have the same expressive power as the QTAS without using backtracking. When
designing the QTAS we already saw that App2 and AppS can be combined into a single rule (DApp2),
which removes some of the overlap between the application rules. However, we still have two
application rules and there are some types being guessed. Thus, in order to �nd a non-backtracking
algorithmic formulation, we must overcome these two problems �rst. To do so, it is helpful to
analyse the root cause of backtracking. For this we �rst identify when we need to use DApp1

and DApp2. Let us consider two special cases in an application 41 42: the function 41 is a lambda
abstraction _G . 4; or the function 41 is a variable G . For these two cases we can clearly identify
which rule is better:

� `(( =) _G . 4 : � ! ⌫ � `0 42 : �
� `= (_G . 4) 42 : ⌫

DApp2

� `0 G : � ! ⌫ � `= 42 : �
� `0 G 42 : ⌫

DApp1

When 41 is a lambda abstraction _G . 4 , DApp1 will never succeed because _G . 4 is not typeable
without contextual information. Thus, the only rule that we can use in this case is DApp2 which, if
it successfully infers a type for 42, can then try to infer the type for the abstraction. When 41 is
a variable G it is not too di�cult to see that DApp1 is always a better rule to use, since the type
of variables can always be inferred. So using DApp1 instead of DApp2 will lead to strictly more
successful typing derivations. One other case that is similar to variables is when 41 is an annotation
expression 4 : �. In this case, DApp1 is also the best choice. For the cases that we have analysed it
seems that we can pick the best application rule, based on the syntactic structure of 41. This is true,
but 41 can, in the general case, have more complex shapes, and those have to be dealt with as well.

Application consumer. An application consumer is either a variable, a lambda or an annotated
term. The three cases in an application consumer capture the three cases that we analysed so far.
For an application 41 42 what we are looking for is the application consumer for 42. That is, the term
that will eventually consume the contextual information for the argument. In direct applications,
such as (_G . G) 42, the application consumer is just 41 (_G . G in this case). In the general case the
consumer may lie deep within 41. Consider the application ((_G . ~) 1) (_I . I). Here ~ is a variable,
with the type (� ! � ) ! � in the typing environment. Note that this term is typeable if we use
DApp1 for the outer application and DApp2 for the inner application. In this case ~ is the consumer
that determines which application rule to use to type check the outer application (for the argument
_I. I). We should choose DApp1, since the application consumer is a variable (~). Conversely, for the
inner application we should use DApp2 since the application consumer is _G . ~. A second example
is (_G . _~ . G +~) 1 2, where the consumer for 2 is _~ . G +~ and the consumer for 1 is (_G . _~ . G +~).

To design an e�cient algorithm the notion of application consumer is useful, since the consumer
determines the best application rule to use. Therefore, once we know what is the best rule, we do
not need to try any other rules. A backtracking algorithm does not attempt to choose the best rule
to apply. Instead, it simply blindly tries each rule and, if some rule fails, it tries another one. To
�nd the best rule to apply, one possibility is to analyse the structure of the application to decide
which rule to apply. In other words we could look into an application 41 42 and �nd the consumer
for 42. Then, using the information about the consumer, we could decide which rule use in the
application. Nonetheless this approach still requires us to do multiple traversals on 41: traversing
41 to determine the syntactic form of the application consumer; and traversing 41 again to actually
type check the application. However, it is possible to do better, and traverse 41 only one time.

4.2 Key Idea: Teleporting Typing Judgements
Knowing about the syntactic form of the application consumer determines what application rule
is best to use, but it does not determine whether typing will be successful or not. For instance,
we could have the ill-typed application (_G . G + 1) true, for which we could determine that
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Our goal is to have the same expressive power as the QTAS without using backtracking. When
designing the QTAS we already saw that App2 and AppS can be combined into a single rule (DApp2),
which removes some of the overlap between the application rules. However, we still have two
application rules and there are some types being guessed. Thus, in order to �nd a non-backtracking
algorithmic formulation, we must overcome these two problems �rst. To do so, it is helpful to
analyse the root cause of backtracking. For this we �rst identify when we need to use DApp1

and DApp2. Let us consider two special cases in an application 41 42: the function 41 is a lambda
abstraction _G . 4; or the function 41 is a variable G . For these two cases we can clearly identify
which rule is better:

� `(( =) _G . 4 : � ! ⌫ � `0 42 : �
� `= (_G . 4) 42 : ⌫

DApp2

� `0 G : � ! ⌫ � `= 42 : �
� `0 G 42 : ⌫

DApp1

When 41 is a lambda abstraction _G . 4 , DApp1 will never succeed because _G . 4 is not typeable
without contextual information. Thus, the only rule that we can use in this case is DApp2 which, if
it successfully infers a type for 42, can then try to infer the type for the abstraction. When 41 is
a variable G it is not too di�cult to see that DApp1 is always a better rule to use, since the type
of variables can always be inferred. So using DApp1 instead of DApp2 will lead to strictly more
successful typing derivations. One other case that is similar to variables is when 41 is an annotation
expression 4 : �. In this case, DApp1 is also the best choice. For the cases that we have analysed it
seems that we can pick the best application rule, based on the syntactic structure of 41. This is true,
but 41 can, in the general case, have more complex shapes, and those have to be dealt with as well.

Application consumer. An application consumer is either a variable, a lambda or an annotated
term. The three cases in an application consumer capture the three cases that we analysed so far.
For an application 41 42 what we are looking for is the application consumer for 42. That is, the term
that will eventually consume the contextual information for the argument. In direct applications,
such as (_G . G) 42, the application consumer is just 41 (_G . G in this case). In the general case the
consumer may lie deep within 41. Consider the application ((_G . ~) 1) (_I . I). Here ~ is a variable,
with the type (� ! � ) ! � in the typing environment. Note that this term is typeable if we use
DApp1 for the outer application and DApp2 for the inner application. In this case ~ is the consumer
that determines which application rule to use to type check the outer application (for the argument
_I . I). We should choose DApp1, since the application consumer is a variable (~). Conversely, for the
inner application we should use DApp2 since the application consumer is _G . ~. A second example
is (_G . _~ . G +~) 1 2, where the consumer for 2 is _~ . G +~ and the consumer for 1 is (_G . _~ . G +~).

To design an e�cient algorithm the notion of application consumer is useful, since the consumer
determines the best application rule to use. Therefore, once we know what is the best rule, we do
not need to try any other rules. A backtracking algorithm does not attempt to choose the best rule
to apply. Instead, it simply blindly tries each rule and, if some rule fails, it tries another one. To
�nd the best rule to apply, one possibility is to analyse the structure of the application to decide
which rule to apply. In other words we could look into an application 41 42 and �nd the consumer
for 42. Then, using the information about the consumer, we could decide which rule use in the
application. Nonetheless this approach still requires us to do multiple traversals on 41: traversing
41 to determine the syntactic form of the application consumer; and traversing 41 again to actually
type check the application. However, it is possible to do better, and traverse 41 only one time.

4.2 Key Idea: Teleporting Typing Judgements
Knowing about the syntactic form of the application consumer determines what application rule
is best to use, but it does not determine whether typing will be successful or not. For instance,
we could have the ill-typed application (_G . G + 1) true, for which we could determine that
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111:16 First name Last name and First name Last name

Types �,⌫,⇠,⇡ ::= Int | � ! ⌫

Expressions 4 ::= 8 | G | _G . 4 | 41 42 | 4 : �
Typing Environments � ::= . | �, G : �
Surrounding Contexts ⌃ ::= ⇤ | � | 4 { ⌃

Generic Consumers 6 ::= 8 | G | 4 : �
Fig. 8. Syntax for the algorithmic type system.

the best rule to use is DApp2, but typing would nonetheless fail. The key idea in our algorithm
is to bring the arguments and the corresponding application consumer together, so that once
we �nd the consumer, we immediately check whether the application succeeds or not. To do
this, in an application 41 42, we delay the typing of 42 until we encounter the application con-
sumer in the typing derivation. To visualize this idea consider the following (pseudo) derivation:

. . . �, G : � ,~ : � ` 2 : �
�, G : � ` _~ . G + ~ : � ! �

Lam

�, G : � ` 1 : �
� ` _G . _~. G + ~ : � ! � ! �

Lam

� ` 1 : �
� ` (_G . _~. G + ~) 1 : � ! �

App

� ` 2 : �
� ` ((_G . _~. G + ~) 1) 2 : �

App

Normally, when encountering an application 41 42, we would attempt to check the typing of 42
directly in a premise of the application rule for 41 42. Instead, what we want is to transport the
typing premise for 42 into the rule that deals with the application consumer. We call this process of
moving the typing premise for 42 into the application consumer teleportation. For instance, in the
derivation above, we teleport � ` 2 : � into a premise of the corresponding consumer _~ . G + ~.
Similarly, we teleport the typing premise � ` 1 : � into a premise of _G . _~ . G + ~.

Teleportation also works for the other 2 types of application consumers: variables and annotated
expressions. In the algorithm shown next, this idea can be implemented by having an auxiliary
form of context, which captures the surrounding context of an expression.

4.3 Algorithmic Type System
Syntax. The algorithmic type system shares the same syntax of types, expressions and typing

environments as the QTAS in Section 3.4. The di�erences are two more syntactic categories:
surrounding contexts and generic consumers. The full syntax is shown in Fig. 8. A surrounding
context (or context for short) captures the information that is in context for the current expression.
A surrounding context can be empty (⇤), which means that the context provides no information.
A context can be a full type �, which comes from type annotations, or known type information.
More interestingly, a context can also be a sequence of expressions 4 , which denote arguments
to applications, followed by more contextual information. Intuitively, expressions in the context
represent deferred type checking tasks of applications, to be carried out when the application
consumer is found in the derivation.
As we have seen in Section 4.1 an important concept is the notion of application consumers.

Application consumers consume contextual information, and are especially interesting because,
in particular, they consume the contextual information about application arguments. However,
any expression can be a consumer of contextual information, since contextual information can
also be type information coming from type annotations. For instance, in the annotated expression
1 : Int, the surrounding context of 1 is Int, and 1 would consume that contextual type information.
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• Typing is parametrised by surrounding contexts ( );  

• Surrounding contexts capture the information that is in context for the terms; 

• A surrounding context can be empty, full type, or a sequence of terms;

Σ

266:16 Xu Xue and Bruno C. d. S. Oliveira

Types �,⌫,⇠,⇡ ::= Int | � ! ⌫

Expressions 4 ::= 8 | G | _G . 4 | 41 42 | 4 : �
Typing Environments � ::= · | �, G : �
Surrounding Contexts ⌃ ::= ⇤ | � | 4 7! ⌃

Generic Consumers 6 ::= 8 | G | 4 : �
Fig. 8. Syntax for the algorithmic type system.

directly in a premise of the application rule for 41 42. Instead, what we want is to transport the
typing premise for 42 into the rule that deals with the application consumer. We call this process of
moving the typing premise for 42 into the application consumer teleportation. For instance, in the
derivation above, we teleport � ` 2 : � into a premise of the corresponding consumer _~ . G + ~.
Similarly, we teleport the typing premise � ` 1 : � into a premise of _G . _~ . G + ~.

Teleportation also works for the other 2 types of application consumers: variables and annotated
expressions. In the algorithm shown next, this idea can be implemented by having an auxiliary
form of context, which captures the surrounding context of an expression.

4.3 Algorithmic Type System
Syntax. The algorithmic type system shares the same syntax of types, expressions and typing

environments as the QTAS in Section 3.4. The di�erences are two more syntactic categories:
surrounding contexts and generic consumers. The full syntax is shown in Fig. 8. A surrounding
context (or context for short) captures the information that is in context for the current expression.
A surrounding context can be empty (⇤), which means that the context provides no information.
A context can be a full type �, which comes from type annotations, or known type information.
More interestingly, a context can also be a sequence of expressions 4 , which denote arguments
to applications, followed by more contextual information. Intuitively, expressions in the context
represent deferred type checking tasks of applications, to be carried out when the application
consumer is found in the derivation.
As we have seen in Section 4.1 an important concept is the notion of application consumers.

Application consumers consume contextual information, and are especially interesting because,
in particular, they consume the contextual information about application arguments. However,
any expression can be a consumer of contextual information, since contextual information can
also be type information coming from type annotations. For instance, in the annotated expression
1 : Int, the surrounding context of 1 is Int, and 1 would consume that contextual type information.
Notice though, that it does not make sense for 1 to consume argument information, since 1 cannot
be applied (thus 1 is not an application consumer). Some kinds of expressions/consumers need
to handle contextual information in a special way, but some other expressions handle contextual
information in a generic way, via the subsumption rule. We call such expressions generic consumers.
Generic consumers in our calculus are integers, annotated expressions and variables.

Surrounding context and elimination forms. An important question that a language designer may
ask at this point is: how dowe determine the information that needs to be tracked in the surrounding
context in the general case? While in the previous section we have already motivated the need
for tracking arguments of applications, what if we extend the language with new constructs? A
general answer to this question is that we need to look at elimination forms. In the STLC there is
only one elimination form: applications 41 42. The arguments of applications provide information
that is helpful for the application consumers, which include the corresponding introduction form
(lambdas), as well as variables and annotations. The information from the arguments can then
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• Terms in contexts are deferred type checking tasks of applications;

Contextual Typing 266:17

� ` ⌃ ) 4 ) � (Typing: under environment � and context ⌃, expression 4 infers type �.)

� ` ⇤) 8 ) Int
ALit

G : � 2 �

� ` ⇤) G ) �
AVar

� ` � ) 4 ) ⌫

� ` ⇤) 4 : � ) �
AAnn

� ` 42 7! ⌃ ) 41 ) � ! ⌫

� ` ⌃ ) 41 42 ) ⌫
AApp

� ` ⇤) 42 ) � �, G : � ` ⌃ ) 4 ) ⌫

� ` 42 7! ⌃ ) _G . 4 ) � ! ⌫
ALam2

�, G : � ` ⌫ ) 4 ) ⇠

� ` � ! ⌫ ) _G . 4 ) � ! ⇠
ALam1

� ` ⇤) 6 ) � ⌃ < ⇤ � ⇡ ⌃

� ` ⌃ ) 6 ) �
ASub

� ` � ⇡ ⌃ (Matching: under environment �, type � is matched by context ⌃.)

� ` � ⇡ ⇤
SubEmpty

� ` � ⇡ �
SubType

� ` � ) 4 ) ⇠ � ` ⌫ ⇡ ⌃

� ` � ! ⌫ ⇡ 4 7! ⌃
SubTerm

Fig. 9. Algorithmic typing and matching for the STLC.

provide the consumers with enough type information for checking typeability. Thus we need to
analyse the elimination forms in the language and identify the information that is needed for aiding
the consumers to establish typeability. Section 5 shows how this idea extends to record projections.

Typing. We show the full rules for algorithmic typing in Fig. 9. Typing has the form � ` ⌃ )
4 ) �, which is interpreted as: under typing environment � and a surrounding context ⌃, the
expression 4 infers the type �. Under this interpretation �, ⌃ and 4 are inputs, and the type � is an
output, determined by the three input parameters of the typing relation.
We can group rules ALit, AVar and AAnn together: they all infer the type without needing any

contextual information. Note that these rules cover all the generic consumer expressions. The
empty surrounding context ⇤ expresses that no contextual information is needed. ALit and AVar

are unsurprising. AAnn infers the type � from its annotation and the � will become surrounding
context information to infer the expression 4 .

There is a single rule for applications, unlike in the QTAS. Rule AApp simply adds the argument
42 to the surrounding context ⌃. Using this extended context we then infer 41’s type, and obtain
the function type � ! ⌫. The type ⌫ will be the result type of the application 41 42. Conversely, we
now have two rules for lambda expressions, unlike the QTAS, which has a single rule. Rules ALam1
and ALam2 cover two cases when inferring the type of a lambda expression. The �rst case (rule
ALam1) is that the context is a type � ! ⌫, which means that the lambda is fully annotated. We
use the type � as the type of bound variable G and add ⌫ to the context to help infer the lambda
body. After we obtain the type ⇠ , we then infer the type � ! ⇠ . The second case (rule ALam2) is
when the �rst entry in the context is an argument expression 42. In this case, we infer the type of
42 and obtain the type �. The type � is used as the type for the lambda variable G , and we further
infer the type lambda body with the context ⌃. Once we get the type ⌫, the �nal inference result
for the lambda expression is � ! ⌫. Importantly, note that the two rules do not overlap since the
syntactic form for the context is di�erent. So the rules are syntax-directed.

Subsumption and the matching judgment. The subsumption rule ASub accounts for generic
consumers when their surrounding context is not empty (⌃ < ⇤). We �rst infer their types with the
empty context and put the type � into a new matching judgment � ` � ⇡ ⌃ that matches the type
� with ⌃. Subsumption does not deal with applications and lambda expressions, since the rules
that cover those expressions already deal with the cases when the context is not empty.
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• Terms in contexts will be carried out to the application consumer: inferred or checked
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provide the consumers with enough type information for checking typeability. Thus we need to
analyse the elimination forms in the language and identify the information that is needed for aiding
the consumers to establish typeability. Section 5 shows how this idea extends to record projections.

Typing. We show the full rules for algorithmic typing in Fig. 9. Typing has the form � ` ⌃ )
4 ) �, which is interpreted as: under typing environment � and a surrounding context ⌃, the
expression 4 infers the type �. Under this interpretation �, ⌃ and 4 are inputs, and the type � is an
output, determined by the three input parameters of the typing relation.
We can group rules ALit, AVar and AAnn together: they all infer the type without needing any

contextual information. Note that these rules cover all the generic consumer expressions. The
empty surrounding context ⇤ expresses that no contextual information is needed. ALit and AVar

are unsurprising. AAnn infers the type � from its annotation and the � will become surrounding
context information to infer the expression 4 .

There is a single rule for applications, unlike in the QTAS. Rule AApp simply adds the argument
42 to the surrounding context ⌃. Using this extended context we then infer 41’s type, and obtain
the function type � ! ⌫. The type ⌫ will be the result type of the application 41 42. Conversely, we
now have two rules for lambda expressions, unlike the QTAS, which has a single rule. Rules ALam1
and ALam2 cover two cases when inferring the type of a lambda expression. The �rst case (rule
ALam1) is that the context is a type � ! ⌫, which means that the lambda is fully annotated. We
use the type � as the type of bound variable G and add ⌫ to the context to help infer the lambda
body. After we obtain the type ⇠ , we then infer the type � ! ⇠ . The second case (rule ALam2) is
when the �rst entry in the context is an argument expression 42. In this case, we infer the type of
42 and obtain the type �. The type � is used as the type for the lambda variable G , and we further
infer the type lambda body with the context ⌃. Once we get the type ⌫, the �nal inference result
for the lambda expression is � ! ⌫. Importantly, note that the two rules do not overlap since the
syntactic form for the context is di�erent. So the rules are syntax-directed.

Subsumption and the matching judgment. The subsumption rule ASub accounts for generic
consumers when their surrounding context is not empty (⌃ < ⇤). We �rst infer their types with the
empty context and put the type � into a new matching judgment � ` � ⇡ ⌃ that matches the type
� with ⌃. Subsumption does not deal with applications and lambda expressions, since the rules
that cover those expressions already deal with the cases when the context is not empty.
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provide the consumers with enough type information for checking typeability. Thus we need to
analyse the elimination forms in the language and identify the information that is needed for aiding
the consumers to establish typeability. Section 5 shows how this idea extends to record projections.

Typing. We show the full rules for algorithmic typing in Fig. 9. Typing has the form � ` ⌃ )
4 ) �, which is interpreted as: under typing environment � and a surrounding context ⌃, the
expression 4 infers the type �. Under this interpretation �, ⌃ and 4 are inputs, and the type � is an
output, determined by the three input parameters of the typing relation.
We can group rules ALit, AVar and AAnn together: they all infer the type without needing any

contextual information. Note that these rules cover all the generic consumer expressions. The
empty surrounding context ⇤ expresses that no contextual information is needed. ALit and AVar

are unsurprising. AAnn infers the type � from its annotation and the � will become surrounding
context information to infer the expression 4 .

There is a single rule for applications, unlike in the QTAS. Rule AApp simply adds the argument
42 to the surrounding context ⌃. Using this extended context we then infer 41’s type, and obtain
the function type � ! ⌫. The type ⌫ will be the result type of the application 41 42. Conversely, we
now have two rules for lambda expressions, unlike the QTAS, which has a single rule. Rules ALam1
and ALam2 cover two cases when inferring the type of a lambda expression. The �rst case (rule
ALam1) is that the context is a type � ! ⌫, which means that the lambda is fully annotated. We
use the type � as the type of bound variable G and add ⌫ to the context to help infer the lambda
body. After we obtain the type ⇠ , we then infer the type � ! ⇠ . The second case (rule ALam2) is
when the �rst entry in the context is an argument expression 42. In this case, we infer the type of
42 and obtain the type �. The type � is used as the type for the lambda variable G , and we further
infer the type lambda body with the context ⌃. Once we get the type ⌫, the �nal inference result
for the lambda expression is � ! ⌫. Importantly, note that the two rules do not overlap since the
syntactic form for the context is di�erent. So the rules are syntax-directed.

Subsumption and the matching judgment. The subsumption rule ASub accounts for generic
consumers when their surrounding context is not empty (⌃ < ⇤). We �rst infer their types with the
empty context and put the type � into a new matching judgment � ` � ⇡ ⌃ that matches the type
� with ⌃. Subsumption does not deal with applications and lambda expressions, since the rules
that cover those expressions already deal with the cases when the context is not empty.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 266. Publication date: August 2024.

Contextual Typing 266:17

� ` ⌃ ) 4 ) � (Typing: under environment � and context ⌃, expression 4 infers type �.)

� ` ⇤) 8 ) Int
ALit

G : � 2 �

� ` ⇤) G ) �
AVar

� ` � ) 4 ) ⌫

� ` ⇤) 4 : � ) �
AAnn

� ` 42 7! ⌃ ) 41 ) � ! ⌫

� ` ⌃ ) 41 42 ) ⌫
AApp

� ` ⇤) 42 ) � �, G : � ` ⌃ ) 4 ) ⌫

� ` 42 7! ⌃ ) _G . 4 ) � ! ⌫
ALam2

�, G : � ` ⌫ ) 4 ) ⇠

� ` � ! ⌫ ) _G . 4 ) � ! ⇠
ALam1

� ` ⇤) 6 ) � ⌃ < ⇤ � ⇡ ⌃

� ` ⌃ ) 6 ) �
ASub

� ` � ⇡ ⌃ (Matching: under environment �, type � is matched by context ⌃.)

� ` � ⇡ ⇤
SubEmpty

� ` � ⇡ �
SubType

� ` � ) 4 ) ⇠ � ` ⌫ ⇡ ⌃

� ` � ! ⌫ ⇡ 4 7! ⌃
SubTerm

Fig. 9. Algorithmic typing and matching for the STLC.
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and ALam2 cover two cases when inferring the type of a lambda expression. The �rst case (rule
ALam1) is that the context is a type � ! ⌫, which means that the lambda is fully annotated. We
use the type � as the type of bound variable G and add ⌫ to the context to help infer the lambda
body. After we obtain the type ⇠ , we then infer the type � ! ⇠ . The second case (rule ALam2) is
when the �rst entry in the context is an argument expression 42. In this case, we infer the type of
42 and obtain the type �. The type � is used as the type for the lambda variable G , and we further
infer the type lambda body with the context ⌃. Once we get the type ⌫, the �nal inference result
for the lambda expression is � ! ⌫. Importantly, note that the two rules do not overlap since the
syntactic form for the context is di�erent. So the rules are syntax-directed.

Subsumption and the matching judgment. The subsumption rule ASub accounts for generic
consumers when their surrounding context is not empty (⌃ < ⇤). We �rst infer their types with the
empty context and put the type � into a new matching judgment � ` � ⇡ ⌃ that matches the type
� with ⌃. Subsumption does not deal with applications and lambda expressions, since the rules
that cover those expressions already deal with the cases when the context is not empty.
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Soundness (Corollaries):

If , then Γ ⊢ □ ⇒ e ⇒ A Γ ⊢0 e : A If , then Γ ⊢ A ⇒ e ⇒ A Γ ⊢∞ e : A

Completeness (Corollaries):

If , then .Γ ⊢0 e : A Γ ⊢ □ ⇒ e ⇒ A If , then .Γ ⊢∞ e : A Γ ⊢ A ⇒ e ⇒ A



A Calculus with Intersection Types, Overloading and Records
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• Introduces subtyping, expressive subsumption; 

• Models features such as function overloading, record projection; 

• More counters: check counters and projection counters; 

• More context: labels can be appended to the context; 

• All the properties: annotatability, decidability, soundness, completeness

Check Our Paper!

Future 
Work?



https://github.com/juniorxxue/contextual-typing
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QTAS: Annotatability (How to annotate a program)
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DLit

� `0 8 : Int

DVar

G : � 2 �
� `0 G : �

DLam

�, G : � `= 4 : ⌫
� `(( =) _G . 4 : � ! ⌫

DApp

� `(( =) 41 : � ! ⌫ � `0 42 : �
� `= 41 42 : ⌫

Fig. 4. STLC with application counters.

3.3 Application Counters
We now present another QTAS with application counters that is equivalent to the type system in
Fig. 2. Unlike all-or-nothing counters, application counters measure how much contextual type
information we need to type a term. We de�ne the syntax below and present the typing in Fig. 4.

Expressions 4 ::= 8 | G | _G . 4 | 41 42
Counters = ::= 0 | ( =

We have two instances of counters: nothing (0) and ( =. We do not deal with annotated terms,
thus 4 : � is not included. The two interesting rules are DLam rule and DApp. In DLam, counter ( =
indicates that in the function type � ! ⌫, the input type � must be known from the surrounding
context. Then we can use it as the type of bound variable G . In DApp, we infer the type of 42, and
increment the counter = of 41, to express that � is known. Thus, we can infer the type � ! ⌫ with
the help of propagated information. The output type ⌫ will be the result type of the application.
Intuitively, the counter denotes the size of the application stack. Thus we can show a corre-

spondence to the type system in Fig. 2 with the following theorems. What we need is to de�ne an
auxiliary judgment that connects the counter to the application stack = ⇠  ⇠ �. The 0 counter
connects to an empty stack and any type, and ( = connects to  ,� and � ! ⌫ inductively.

0 ⇠ . ⇠ �
⇠Empty

= ⇠  ⇠ ⌫

( = ⇠  ,� ⇠ � ! ⌫
⇠Cons

If the term 4 can be typed with the type � with counter = and = is consistent with  , it can infer �
with the application stack  , and vice-versa.

T������ 3.3 (S��������). If � `= 4 : � and = ⇠  ⇠ �, then � p  ` 4 ) �.

T������ 3.4 (C�����������). If � p  ` 4 ) � and = ⇠  ⇠ �, then � `= 4 : �.

3.4 All in One
Finally, we show a QTAS that combines all-or-nothing counters and application counters. Compared
with the previous QTASs, we include both annotated terms and application counters.

Expressions 4 ::= 8 | G | _G . 4 | 41 42 | 4 : �
Counters = ::= 0 | 1 | ( =
Syntactic Sugar let G = 41 in 42 , (_G . 42) 41

We present our typing rules in Fig. 5. DLit and DVar are unsurprising. In rule DAnn the annotated
term 4 : � is typeable with type � without any additional contextual type information, if 4 is
typeable with � with full contextual information. DLam type checks a lambda only when the
counter can be decreased, which means that the information for the input type � must be available
contextually. The =� meta-operation is de�ned with two simple cases:1� = 1; and (( =)� = =.
The lambda body (4) may itself require some amount of contextual information =. For instance, the
lambda term _G . _~. G +~ is typeable if the counter is at least 2: the lambda body _~ . G +~ requires
type information for ~, whereas the outer lambda requires type information for G . Rules DApp1
and DApp2 describe two situations: whether the function can infer or the argument can infer. We
use the word infer here to represent the situation where the counter is 0. In DApp1, if the function
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� `= 41 42 : ⌫

Fig. 4. STLC with application counters.

3.3 Application Counters
We now present another QTAS with application counters that is equivalent to the type system in
Fig. 2. Unlike all-or-nothing counters, application counters measure how much contextual type
information we need to type a term. We de�ne the syntax below and present the typing in Fig. 4.

Expressions 4 ::= 8 | G | _G . 4 | 41 42
Counters = ::= 0 | ( =

We have two instances of counters: nothing (0) and ( =. We do not deal with annotated terms,
thus 4 : � is not included. The two interesting rules are DLam rule and DApp. In DLam, counter ( =
indicates that in the function type � ! ⌫, the input type � must be known from the surrounding
context. Then we can use it as the type of bound variable G . In DApp, we infer the type of 42, and
increment the counter = of 41, to express that � is known. Thus, we can infer the type � ! ⌫ with
the help of propagated information. The output type ⌫ will be the result type of the application.
Intuitively, the counter denotes the size of the application stack. Thus we can show a corre-

spondence to the type system in Fig. 2 with the following theorems. What we need is to de�ne an
auxiliary judgment that connects the counter to the application stack = ⇠  ⇠ �. The 0 counter
connects to an empty stack and any type, and ( = connects to  ,� and � ! ⌫ inductively.
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If the term 4 can be typed with the type � with counter = and = is consistent with  , it can infer �
with the application stack  , and vice-versa.

T������ 3.3 (S��������). If � `= 4 : � and = ⇠  ⇠ �, then � p  ` 4 ) �.

T������ 3.4 (C�����������). If � p  ` 4 ) � and = ⇠  ⇠ �, then � `= 4 : �.

3.4 All in One
Finally, we show a QTAS that combines all-or-nothing counters and application counters. Compared
with the previous QTASs, we include both annotated terms and application counters.

Expressions 4 ::= 8 | G | _G . 4 | 41 42 | 4 : �
Counters = ::= 0 | 1 | ( =
Syntactic Sugar let G = 41 in 42 , (_G . 42) 41

We present our typing rules in Fig. 5. DLit and DVar are unsurprising. In rule DAnn the annotated
term 4 : � is typeable with type � without any additional contextual type information, if 4 is
typeable with � with full contextual information. DLam type checks a lambda only when the
counter can be decreased, which means that the information for the input type � must be available
contextually. The =� meta-operation is de�ned with two simple cases:1� = 1; and (( =)� = =.
The lambda body (4) may itself require some amount of contextual information =. For instance, the
lambda term _G . _~. G +~ is typeable if the counter is at least 2: the lambda body _~ . G +~ requires
type information for ~, whereas the outer lambda requires type information for G . Rules DApp1
and DApp2 describe two situations: whether the function can infer or the argument can infer. We
use the word infer here to represent the situation where the counter is 0. In DApp1, if the function
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Weak Annotatability: If , then  and  is the (type) erasure of . 

Strong Annotatability:  

1) If , then .       2) If , then .

Γ ⊢ e : A ∃e′￼, Γ ⊢0 e′￼ : A e e′￼

Γ ⊢ e : A ↝ e′￼ Γ ⊢(𝚗𝚎𝚎𝚍 e) e′￼ : A Γ ⊢ e : A ↝ e′￼ Γ ⊢0 (e′￼ : A) : A

doesn't tell us where to put annotations


