
COMP3258  
Functional Programming

Tutorial 9: Equational Reasoning and Structural Induction



Warm-up (1)

Given the definition of not show that 

not (not x) = x

not True  = False 
not False = True



Warm-up (2)
Given the definition of SAE* and eval, show that 

eval (Add e1 (Add e2 e3)) = eval (Add (Add e1 e2) e3)

data SAE = Number Integer 
         | Add SAE SAE

eval :: SAE -> Integer 
eval (Number n) 
eval (Add e1 e2) = eval e1 + eval e2

*https://vesely.io/teaching/CS4400f20/l/06/06.pdf



eval (Add e1 (Add e2 e3)) 
= {applying eval} 
eval e1 + eval (Add e2 e3) 
= {applying eval} 
eval e1 + (eval e2 + eval e3) 
= {assoc of (+)} 
(eval e1 + eval e2) + eval e3 
= {unapplying eval} 
eval (Add e1 e2) + eval e3 
= {unapplying eval} 
eval (Add (Add e1 e2) e3)



Given the definition of map and (.), show that 

map f (map g xs) = map (f . g) xs

map f [] = [] 
map f (x:xs) = f x : map f xs 

(f . g) x = f (g x)

Question 1



induction on xs 

Base case: 
map f (map g []) 
= {applying inner map} 
map f [] 
= {applying map} 
[]

Inductive case: 
map f (map g (x:xs)) 
= {applying inner map} 
map f (g x : map g xs) 
= {applying outer map} 
f (g x) : map f (map g xs) 
= {induction hypothesis} 
f (g x) : map (f . g) xs 
= {unapplying (.)} 
(f . g) x : map (f . g) xs 
= {unapplying map} 
= map (f . g) (x : xs)



Given the definition of all and replicate, show that 

all (== x) (replicate n x) = True

all p []     = True 
all p (x:xs) = p x && all p xs 

replicate 0 x = [] 
replicate n x = x : replicate (n - 1) x

Question 2



induction on n 

Base case: 

all (== x) (replicate 0 x) 
= {applying replicate} 
all (== x) [] 
= {applying all} 
True

Inductive case: n = m + 1 

all (== x) (replicate (m + 1) x) 
= {applying replicate} 
all (== x) (x : replicate m x) 
= {applying all} 
(== x) x && all (== x) (replicate m x) 
= {applying ==} 
True && all (== x) (replicate m x) 
= {induction hypo} 
True && True 
= {applying &&} 
True



Given the definition of (++), show that 

1) xs ++ [] = xs 
2) xs ++ (ys ++ zs) = (xs ++ ys) ++ zs

[] ++ ys       = ys 
(x : xs) ++ ys = x : (xs ++ ys)

Question 3



1) xs ++ [] = xs 

induction on xs 

Base case: 
[] ++ [] 
= {applying (++)} 
[] 

Inductive case: 
(x : xs) ++ [] 
= {applying (++)} 
x : (xs ++ []) 
= {induction hypothesis} 
x : xs

2) xs ++ (ys ++ zs) = (xs ++ ys) ++ zs 

induction on xs 

Base case: 

[] ++ (ys ++ zs) 
= {applying (++)} 
ys ++ zs 
= {unapplying (++)} 
([] ++ ys) ++ zs

Inductive case: 
(x:xs) ++ (ys ++ zs) 
= {applying (++)} 
x : (xs ++ (ys ++ zs)) 
= {induction hypothesis} 
x : ((xs ++ ys) ++ zs) 
= {unapplying (++)} 
(x : (xs ++ ys)) ++ zs 
= {unapplying (++)} 
((x : xs) ++ ys) ++ zs



Given the definition of (++), take and drop, show that 

take n xs ++ drop n xs = xs

take 0 xs = [] 
take (n + 1) [] = [] 
take (n + 1) (x : xs) = x : take n xs 

drop 0 xs = xs 
drop (n + 1) [] = [] 
drop (n + 1) (_ : xs) = drop n xs

Question 3



Induction on n xs 

Base case: n = 0, xs = [] 
take 0 [] ++ drop 0 [] 
= {applying take, drop} 
[] ++ [] 
= {applying ++} 
[] 

Base case: n = m + 1, xs = [] 
take (m+1) [] ++ drop (m+1) [] 
= {applying take, drop} 
[] ++ [] 
= {applying ++} 
[]

Base case: n = 0, xs = x:xs 
take 0 (x:xs) ++ drop 0 (x:xs) 
= {applying take, drop} 
[] ++ [] 
= {applying ++} 
[] 

Inductive case: n = m + 1, xs = x:xs 
take (m+1) (x:xs) ++ drop (m+1) (x:xs) 
= {applying take, drop} 
(x : take m xs) ++ drop m xs 
= {unapplying (++)} 
x : (take m xs ++ drop m xs) 
= {induction hypo} 
x : xs



Given the definition of Tree, show that 
the number of leaves in a tree is always one greater than 
the number of nodes, 
by induction on trees. 

data Tree = Leaf Int | Node Tree Tree

Question 4



First we define two functions 

nodes  :: Tree -> Int 
leaves :: Tree -> Int 

nodes (Leaf _) = 0 
nodes (Node l r) = 1 + nodes l + nodes r 

leaves (Leaf _) = 1 
leaves (Node l r) = leaves l + leaves r 

Prove: (nodes t) + 1 = leaves t



Induction on t 

Base case: t = Leaf n 

(nodes (Leaf n)) + 1 
= {applying nodes} 
0 + 1 
= {arithmetic calculation} 
1 
= {unapplying leaves} 
leaves (Leaf n)

Inductive case: t = Node l r 

nodes (Node l r) + 1 
= {applying nodes} 
1 + nodes l + nodes r + 1 
= {permutation of addition} 
((nodes l) + 1) + ((nodes r) + 1) 
= {induction hypo} 
leaves l + leaves r 
= {unapplying leaves} 
leaves (Node l r)


