COMP3258 Functional Programming Tutorial 9: Equational Reasoning and Structural Induction

Warm-up (1)

Given the definition of not show that not $(not x) = x$

not True = False not False = True

Warm-up (2)

- Given the definition of SAE* and eval, show that
- eval (Add e1 (Add e2 e3)) = eval (Add (Add e1 e2) e3)
- data SAE = Number Integer | Add SAE SAE
- eval :: SAE -> Integer eval (Number n) $eval$ (Add e1 e2) = eval e1 + eval e2

*https://vesely.io/teaching/CS4400f20/l/06/06.pdf

eval (Add e1 (Add e2 e3)) = {applying eval} eval e1 + eval (Add e2 e3) = {applying eval} eval e1 + (eval e2 + eval e3) $=$ {assoc of $(+)$ } (eval e1 + eval e2) + eval e3 = {unapplying eval} eval (Add e1 e2) + eval e3 = {unapplying eval} eval (Add (Add e1 e2) e3)

- Given the definition of map and (.), show that
- map f (map g xs) = map $(f g g) xs$

- map f $[] = []$ map $f(x:xs) = f(x : map f xs)$
- $(f \cdot g) \times = f (g \times)$
- -

induction on xs

Inductive case: map f (map g (x:xs)) = {applying inner map} map $f(g x : map g xs)$ = {applying outer map} $f(g x)$: map $f (map g xs)$ = {induction hypothesis} $f(g x)$: map $(f g x)$ $=$ {unapplying (.)} $(f g) \times : \text{map}(f g) \times$ = {unapplying map} $=$ map $(f g)(x : x)$

Base case: map f (map g []) = {applying inner map} map f [] = {applying map} []

- Given the definition of all and replicate, show that
- all (== x) (replicate n x) = True

- all p [] = True all $p(x:xs) = p \times & d \times d1 p \times$
-
- replicate 0 x = [] replicate $n \times = x$: replicate $(n - 1) \times$

induction on n

Base case:

all (== x) (replicate $0 x$) = {applying replicate} all $(== x)$ [] = {applying all} True

Inductive case: n = m + 1

all (== x) (replicate (m + 1) x) = {applying replicate} all $(== x)$ $(x : replicate m x)$ = {applying all} (== x) x && all (== x) (replicate m x) $=$ {applying $=$ = $=$ } True && all (== x) (replicate m x) = {induction hypo} True && True = {applying &&} True

Given the definition of (++), show that

1) xs ++ [] = xs 2) xs ++ (ys ++ zs) = (xs ++ ys) ++ zs

 $L1 + ys = ys$ $(x : xs)$ ++ $ys = x : (xs + ys)$

Base case: $\begin{bmatrix} \end{bmatrix}$ ++ $\begin{bmatrix} \end{bmatrix}$ $=$ {applying $(++)$ } [] Inductive case: $(x : xs) + |$ $=$ {applying $(++)$ } $x : (xs + f])$ = {induction hypothesis} x : xs Base case: $[] + + (ys + + zs)$ $=$ {applying $(++)$ } ys ++ zs $=$ {unapplying $(++)$ } $([]++ \gamma s) ++ zs$

induction on xs induction on xs

1) $xs + |] = xs$

2) $xs + f(ys + zs) = (xs + ys) + zs$

Inductive case: $(x:xs)$ ++ $(ys + zs)$ $=$ {applying $(++)$ } $x : (xs ++ (ys ++ zs))$ = {induction hypothesis} $x : ((xs + ys) + zs)$ $=$ {unapplying $(++)$ } $(x : (xs + ys)) + zs$ $=$ {unapplying $(++)$ } $((x : xs) ++ ys) ++ zs$

- Given the definition of (++), take and drop, show that
- take n xs ++ drop n xs = xs
- take $0 \times s = \lceil \rceil$ take (n + 1) [] = [] take $(n + 1)$ $(x : xs) = x : takes n xs$
- drop $0 \times s = x s$ drop $(n + 1)$ $[] = []$ drop $(n + 1)$ $(_ : xs) =$ drop n xs
-

Induction on n xs

Base case: n = 0, xs = [] take 0 [] ++ drop 0 [] = {applying take, drop} [] ++ [] $=$ {applying ++} []

Base case: n = 0, xs = x:xs take 0 (x:xs) ++ drop 0 (x:xs) = {applying take, drop} $[] + +]$ $= {applying++}$ $\lfloor \ \rfloor$

Base case: n = m + 1, xs = [] take (m+1) [] ++ drop (m+1) [] = {applying take, drop} [] ++ [] $=$ {applying ++} []

Inductive case: $n = m + 1$, $xs = x:xs$ take (m+1) (x:xs) ++ drop (m+1) (x:xs) = {applying take, drop} (x : take m xs) ++ drop m xs $=$ {unapplying $(++)$ } x : (take m xs ++ drop m xs) = {induction hypo}

x : xs

Given the definition of Tree, show that the number of leaves in a tree is always one greater than the number of nodes, by induction on trees.

data Tree = Leaf Int | Node Tree Tree

First we define two functions

nodes :: Tree -> Int leaves :: Tree -> Int

nodes (Leaf $_$) = 0

 $leaves (Leaf) = 1$

-
- nodes (Node l r) = 1 + nodes l + nodes r
	-
- leaves (Node l r) = leaves l + leaves r
	-

Prove: (nodes t) + 1 = leaves t

Induction on t

Base case: t = Leaf n

 $(nodes (Leaf n)) + 1$

- = {applying nodes}
- $0 + 1$
- = {arithmetic calculation} 1
- = {unapplying leaves} leaves (Leaf n)

Inductive case: t = Node l r

nodes (Node l r) + 1 = {applying nodes} $1 + nodes + nodes + 1$ = {permutation of addition} $((nodes 1) + 1) + ((nodes r) + 1)$ = {induction hypo} leaves l + leaves r = {unapplying leaves} leaves (Node l r)