COMP3258
Functional Programming

Tutorial 9: Equational Reasoning and Structural Induction



Warm-up (I)

Given the definition of not show that

not (not x) = X

False
True

not True
not False



Warm-up (2)

Given the definition of SAE™ and eval, show that

eval (Add el (Add e2 e3)) = eval (Add (Add el e2) e3)

data SAE = Number Integer

| Add SAE SAE

eval :: SAE -> Integer
eval (Number n)
eval (Add el e2) = eval el + eval e2

*https://vesely.io/teaching/C54400f20/1/06/06.pdf



eval (Add el (Add e2 e3))
= {applying eval}

eval el + eval (Add e2 e3)
= {applying eval}

eval el + (eval e2 + eval e3)
= {assoc of (+)}

(eval el + eval e2) + eval e3
= {unapplying eval}

eval (Add el e2) + eval e3
= {unapplying eval}

eval (Add (Add el e2) e3)



Question 1

Given the definition of map and (.), show that

map £ (map g xs) = map (f . g) xs

map £ [] = [

map £ (x:xs) = £ x : map £ xs

(f . g) x=f£f (g x)



induction on xs

Base case:

map f (map g [])

= {applying inner map}
map f []

= {applying map}

[]

Inductive case:

map f (map g (x:xs))

= {applying inner map}
map f (g X : map g xs)

= {applying outer map}

f (g x) : map f (map g xs)
= {induction hypothesis}
f (g x):map (f.qg)xs

= {unapplying (.)}

(f .g) x:map (f.g) xs
= {unapplying map}
=map (f . g) (x: xs)



Question 2

Given the definition of all and replicate, show that

all (== x) (replicate n x) = True

True
b x & all p xs

all p [
all p (x:xs)

L]

x : replicate (n - 1) x

replicate 0 x
replicate n x



Inductive case: h=m + 1

induction on n all (== x) (replicate (m + 1) x)
= {applying replicate}
Base case: all (== x) (x : replicate m x)
= {applying all}
all (== x) (replicate O x) (== x) x && all (== x) (replicate m x)
= {applying replicate} = {applying ==
all (== x) [] True && all (== x) (replicate m x)
= {applying all} = {induction hypo}
True True && True
= {applying &&}

True



Question 3

Given the definition of (++), show that

1) xs ++ [] = xs
2) xs ++ (ys ++ zs) = (xs ++ ys) ++ zs

[1 ++ ys
(x : xs) ++ YS

YS
X : (xs ++ ys)



1) xs ++ [] = xs

induction on xs

2) XS ++ (ys ++ zS) = (XS ++ yS) ++ 28

induction on xs

Base case: Base case:

[]++[]

= {applying (++)} []++ (ys ++ zs)

[] = {applying (++)}
yS ++ ZS

Inductive case: = {unapplying (++)}

(X : xs) ++[]

= {applying (++)}

X i (xs ++ [])

= {induction hypothesis}
X XS

([]++ ys) ++ 7S

Inductive case:

(x:xs) ++ (ys ++ zs)

= {applying (++)}

X : (Xs ++ (ys ++ z5))

= {induction hypothesis}
X i ((xs ++ ys) ++ zs)

= {unapplying (++)}

(X : (Xs ++ys)) ++ 25

= {unapplying (++)}

((x : Xs) ++ ys) ++ z5



Question 3

Given the definition of (++), take and drop, show that

take n xs ++ drop n xs = xs

take @ xs = []
take (n + 1) [1 = []
take (n + 1) (x : xs)

X : take n xs

drop @ xs = xs
drop (n + 1) []1 = []
drop (n + 1) (_ : xs)

drop n Xs



Induction on n xs

Base case: n =0, xs =[]
take O [] ++ drop O []

= {applying take, drop}
[]++[]

= {applying ++}

]

Base case:n=m+1, xs =[]
take (m+1) [] ++ drop (m+1) []
= {applying take, drop}
[]++[]

= {applying ++}

]

Base case: h = 0, xs = x:xs
take O (x:xs) ++ drop O (x:xs)
= {applying take, drop}

[]++ []

= {applying ++}

[]

Inductive case: n=m + 1, xs = X:xs
take (m+1) (x:xs) ++ drop (m+1) (x:xs)
= {applying take, drop}

(x : take m xs) ++ drop m xs

= {unapplying (++)}

X . (tfake m xs ++ drop m xs)

= {induction hypo}

X i XS



Question 4

Given the definition of Tree, show that

the number of leaves in a tree is always one greater than
the number of nodes,
by induction on trees.

data Tree = Leaf Int | Node Tree Tree



First we define two functions

nodes ::. Tree -> Int
leaves :: Tree -> Int

nodes (Leaf ) =0
nodes (Node I r) =1+ nodes | + nodes r

leaves (Leaf ) =1
leaves (Node | r) = leaves | + leaves r

Prove: (nodes t) + 1 = leaves t



Inductionon t

Base case: t = Leaf n

(nodes (Leaf n)) + 1

= {applying nodes}

O0+1

= {arithmetic calculation}
1

= {unapplying leaves}
leaves (Leaf n)

Inductive case: t+ = Node | r

nodes (Node | r) + 1

= {applying nodes}

1+ nodes | +nodesr+1

= {permutation of addition}
((nodes |) + 1) + ((nodes r) + 1)
= {induction hypo}

leaves | + leaves r

= {unapplying leaves}

leaves (Node | r)



