
COMP3258
Functional Programming

Tutorial Session 8: IO and Monads

Review: primitives

Review: derived primitives

Q: palindrome

Q: palindrome

palindrome :: IO ()
palindrome = do
 putStrLn "Enter a sentence:"
 sentence <- getLine

 let cleanedSentence = map toLower $ filter isAlpha sentence

 if isPalindrome cleanedSentence
 then putStrLn "It's a palindrome!"
 else putStrLn "Nope!"

isPalindrome :: String -> Bool
isPalindrome s = s == reverse s

Q: Nim Game

• Two players take turns to remove one or more stars from the
end of a single row.

• The winner is the player who removes the last star or stars from
the board.

Q: showStars
λ: showStars 0
""
λ: showStars 1
"*"
λ: showStars 3
"* * *"
λ: showStars 4
"* * * *"

showStars :: Int -> String
showStars = intersperse ' ' . (`replicate` '*')

Q: printBoardλ: printBoard [1]

1: *

λ: printBoard [1,1]

1: *
2: *

λ: printBoard [1,1,2]

1: *
2: *
3: * *

λ: printBoard [1..5]

1: *
2: * *
3: * * *
4: * * * *
5: * * * * *

printBoard :: [Int] -> IO ()
printBoard board = putStrLn "" >> printBoard' board >> putStrLn ""
 where
 printBoard' :: [Int] -> IO ()
 printBoard' b = forM_ (zip b [1 :: Int ..])
 $ \(ns, idx) -> putStrLn $ printf "%d: %s" idx (showStars ns)

Q: modifyList
λ: modifyList (+1) 2 [1,2,3,4]
[1,2,4,4]
λ: modifyList (subtract 1) 2 [1,2,3,4]
[1,2,2,4]

modifyList :: (a -> a) -> Int -> [a] -> [a]
modifyList f 0 (h : t) = f h : t
modifyList f n (h : t) = h : modifyList f (n - 1) t
modifyList _ _ [] = []

Q: playNim

nim :: Int -> IO ()
nim x = do
 let board = [x, x - 1 .. 1]
 printBoard board
 playNim board P1

playNim :: [Int] -> Player -> IO ()
playNim board p = if all (== 0) board
 then putStrLn $ printf "%s wins!" (show $ switchP p)
 else do
 putStrLn "" >> print p
 board' <- boardAction board
 printBoard board'
 playNim board' (switchP p)
 where
 boardAction :: [Int] -> IO [Int]
 boardAction b = do
 putStr "Enter a row number: "
 row <- readLn
 putStr "Star to remove: "
 n <- readLn
 return $ modifyList (max 0 . subtract n) (row - 1) b

Monads
The basic intuition is that it combines two computations into one larger computation

We’ve already got this intuition from Parser monad, which combines two parser
into a larger parser using do-notation (desugars to bind operation).

However, this intuition cannot apply to all monad cases.
Personally, I would like to develop each intuition for each different monads.

p :: Parser (Char, Char)
p = do x <- item
 y <- item
 return (x, y)

Maybe Monad

instance Monad Maybe where
 return :: a -> Maybe a
 return x = Just x

 (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
 (>>=) m g = case m of
 Nothing -> Nothing
 Just x -> g x

Propagating failures

Maybe Monad

newtype Email = Email String
newtype Password = Password String
newtype Age = Age Int

validateEmail :: String -> Maybe Email
validateEmail input = if '@' `elem` input
 then Just (Email input)
 else Nothing

validatePassword :: String -> Maybe Password
validatePassword input = if length input > 12
 then Just (Password input)
 else Nothing

validateAge :: String -> Maybe Age
validateAge input = case (readMaybe input :: Maybe Int) of
 Nothing -> Nothing
 Just a -> Just (Age a)

Suppose we are validating a user registration, where they give us their email,
their password, and their age. We'll provide simple functions for validating each
of these input strings and converting them into newtype values:

Maybe Monad

data User = User Email Password Age

processInputs :: (String, String, String) -> Maybe User
processInputs (i1, i2, i3) = do
 email <- validateEmail i1
 password <- validatePassword i2
 age <- validateAge i3
 return $ User email password age

You'll get Nothing if any validation fails

One step further: Either Monad

data Either a b = Left a | Right b

instance Monad (Either e) where
 Left l >>= _ = Left l
 Right r >>= k = k r

Propagating failures with infos

Either Monad
data ValidationError = BadEmail String
 | BadPassword String
 | BadAge String
 deriving (Show)

validateEmail :: String -> Either ValidationError Email
validateEmail input = if '@' `elem` input
 then Right (Email input)
 else Left (BadEmail input)

validatePassword :: String -> Either ValidationError Password
validatePassword input = if length input > 12
 then Right (Password input)
 else Left (BadPassword input)

validateAge :: String -> Either ValidationError Age
validateAge input = case (readMaybe input :: Maybe Int) of
 Nothing -> Left (BadAge input)
 Just a -> Right (Age a)

processInputs :: (String, String, String) -> Either ValidationError User
processInputs (i1, i2, i3) = do
 email <- validateEmail i1
 password <- validatePassword i2
 age <- validateAge i3
 return $ User email password age

Either Monad
createUser :: IO (Either ValidationError User)
createUser = do
 i1 <- getLine
 i2 <- getLine
 i3 <- getLine
 let result = processInputs (i1, i2, i3)
 case result of
 Left e -> print ("Validation Error: " ++ show e) >> return (Left e)
 Right u -> return (Right u)

λ: createUser
someone at gmail dot com
password
42
"Validation Error: BadEmail \"someone at gmail dot com\""

