
COMP3258
Functional Programming

Tutorial Session 6: Mid Term Review

Problem 1
Write a Haskell function wordVowels :: String -> [(String, Int)] that takes a sentence (a
string containing words separated by spaces) and returns a list of tuples, where each tuple contains a
word and the number of vowels in that word.

The vowels are 'a', 'e', 'i', 'o', and 'u' (both uppercase and lowercase). For example:

wordVowels "Haskell is fun" = [("Haskell", 2), ("is", 1), ("fun", 1)]

wordVowels “Lists are useful" = [("Lists", 1), ("are", 2), ("useful", 3)]

wordVowels "HELLO WORLD" = [("HELLO", 2), ("WORLD", 1)]

(a) The function should use list comprehensions and may use basic functions and library
functions, but not recursion. 
 
(b) Write a second function version of wordVowels, this time that must use recursion and may use
basic functions, but you should not use list comprehensions and library functions.

Problem 1

Subproblems

[1] Split a sentence into words

splitSentence :: String -> [String]

>>> splitSentence "Haskell is fun”

[“Haskell”, “is”, “fun”]

>>> splitSentence “Lists are useful”

[“Lists”, “are”, “useful”]

[2] Count vowels in a list of words

countVowelsList :: [String] -> [(String, Int)]

>>> countVowelsList [“Haskell”, “is”, “fun”]

[("Haskell", 2), ("is", 1), ("fun", 1)]

>>> countVowelsList [“Lists”, “are”, “useful”]

[("Lists", 1), ("are", 2), ("useful", 3)]

wordVowels :: String -> [(String, Int)]

wordVowels = countVowelsList . splitSentence

Subproblem [1]

[1] Split a sentence into words

splitSentence :: String -> [String]

>>> splitSentence "Haskell is fun”

[“Haskell”, “is”, “fun”]

>>> splitSentence “Lists are useful”

[“Lists”, “are”, “useful”]

splitSentenceA :: String -> [String]

splitSentenceA = words

splitSentenceB :: String -> [String]

splitSentenceB str = foldr processWord [] str

 where

 processWord :: Char -> [String] -> [String]

 processWord ' ' acc = [] : acc

 processWord curr [] = [[curr]]

 processWord curr (w:ws) = (curr : w) : ws

splitSentenceC :: String -> [String]

splitSentenceC [] = []

splitSentenceC (x:xs) | x == ' ' = [] : splitSentenceC xs

 | otherwise = case (splitSentenceC xs) of

 [] -> [[x]]

 (y:ys) -> (x:y):ys

Subproblem [2]
[2.1] Count vowels in a word

countVowels :: String -> (String, Int)

>>> countVowels “Haskell”

(“Haskell”, 2)

>>> countVowels “Lists”

(“Lists”, 2)

countVowelsListA :: [String] -> [(String, Int)]

countVowelsListA xs = [countVowelsA x | x <- xs]

countVowelsA :: String -> (String, Int)

countVowelsA s = (s, length $ filter (`elem` "aeiouAEIOU") s)

Subproblem [2]
[2.1] Count vowels in a word

countVowels :: String -> (String, Int)

>>> countVowels “Haskell”

(“Haskell”, 2)

>>> countVowels “Lists”

(“Lists”, 2)

countVowelsListB :: [String] -> [(String, Int)]

countVowelsListB [] = []

countVowelsListB (x:xs) = countVowelsB x : countVowelsListB xs

countVowelsB :: String -> (String, Int)

countVowelsB s = (s, countVowelsB' s)

 where countVowelsB' [] = 0

 countVowelsB' (x:xs) = if isVowel x then 1 + countVowelsB' xs else countVowelsB' xs

Problem 1

wordVowels :: String -> [(String, Int)]

wordVowels s = wordVowels' s "" 0 []

wordVowels' :: String -> String -> Int -> [(String,Int)] -> [(String,Int)]

wordVowels' [] s n acc = acc ++ [(s,n)]

wordVowels' (x:xs) s n acc

 | isVowel x = wordVowels' xs (s ++ [x]) (n+1) acc

 | x == ' ' = wordVowels' xs "" 0 (acc ++ [(s,n)])

 | otherwise = wordVowels' xs (s ++ [x]) n acc

Problem 2a
Consider the following data type representing boolean expressions with a single variable:

data BExpr = X -- single boolean variable

 | And BExpr BExpr -- logical AND

 | Or BExpr BExpr -- logical OR

 | Not BExpr -- logical NOT

 | Impl BExpr BExpr -- logical implication

 | Equiv BExpr BExpr -- logical equivalence

(a) Write a function evalB :: BExpr -> Bool -> Bool, which takes a boolean expression and
the value of the single boolean variable X, and returns the value of the expression.  
 
evalB (And X (Or X (Not X))) True = True

evalB (Impl X X) False = True

evalB (Equiv X (Not X)) True = False

Problem 2a

evalB :: BExpr -> Bool -> Bool

evalB X val = val

evalB (And b1 b2) val = evalB b1 val && evalB b2 val

evalB (Or b1 b2) val = evalB b1 val || evalB b2 val

evalB (Not b) val = not (evalB b val)

evalB (Impl b1 b2) val = not (evalB b1 val) || evalB b2 val

evalB (Equiv b1 b2) val = evalB b1 val == evalB b2 val

Problem 2b

Write a function toInfixNotation :: BExpr -> [String] that converts a boolean expression to its
equivalent in infix notation. In infix notation, the operator is placed between its operands, like:

Not X in infix notation is NOT X

And X Y in infix notation is X AND Y

Or X (Not Y) in infix notation is X OR (NOT Y)

Impl X (And Y Z) in infix notation is X IMPL (Y AND Z)

Equiv X (Or Y (Not Z)) in infix notation is X EQUIV (Y OR (NOT Z))

The function should return the infix notation as a list of strings. For example:

toInfixNotation (And X (Or X (Not X))) = ["X","AND","X","OR","NOT","X"]

Problem 2b

toInfixNotation :: BExpr -> [String]

toInfixNotation X = ["X"]

toInfixNotation (And e1 e2) = toInfixNotation e1 ++ ["AND"] ++ toInfixNotation e2

toInfixNotation (Or e1 e2) = toInfixNotation e1 ++ ["OR"] ++ toInfixNotation e2

toInfixNotation (Not e) = ["NOT"] ++ toInfixNotation e

toInfixNotation (Impl e1 e2) = toInfixNotation e1 ++ ["IMPL"] ++ toInfixNotation e2

toInfixNotation (Equiv e1 e2) = toInfixNotation e1 ++ ["EQUIV"] ++ toInfixNotation e2

Problem 3
In Haskell, how does the order of generators in list comprehensions affect the
resulting list, and what is the significance of guards in list comprehensions?
Illustrate your answer with a concrete example of a list comprehension with two
generators and a guard.

• the order of generators in list comprehensions affects the resulting list

• Haskell list comprehensions can also include guards, which are boolean expressions that act as
filters, allowing elements to be included in the output list only if the guard condition is True.

list1 = [1, 2, 3]

list2 = ['A', 'B', 'C']

comprehension1 = [(x, y) | x <- list1, y <- list2, x /= 2] -- [(1,'A'),(1,'B'),(1,'C'),(3,'A'),(3,'B'),(3,'C')]

comprehension2 = [(x, y) | y <- list2, x <- list1, x /= 2] -- [(1,'A'),(3,'A'),(1,'B'),(3,'B'),(1,'C'),(3,'C')]

Collect Your Paper Now. 
 

There’re 6 stacks, classified by ID 
30355, 30356, 30357, 30358, 30359, 3036

Double check your scores with Moodle

If some grading issues are identified, you can talk with me,
but need to confirm with professor later

