COMP32586
-unctional Programming

Tutorial Session 5: Datatypes

lable of Contents

e Datatypes (Data, Types, Kinds)
* Classes

* Folding Over Datatypes

Review

* [ype Declarations
e Data Declarations

* Newtype Declarations

lype Declarations

type String = [Char] e Use type keyword to declare a new type
type Pos = (Int, Int)

type Trans - Pos — Pos e Use type constructor to construct a type
type Pair a = (a, a) e (0-argument type constructor

type Assoc R v = [(R, V)]

® n-argument type constructor

lype Declarations (Kinds)

e Types have kinds (the type of types)

e Use :lkor to ask for it
type String = [Char]
type Pos = (Int, Int) .k String
type Trans = Pos — Pos String :: %
: _ R[]
type Pair a = (a, a) 1 % o> %
type Assoc R v = [(R, V)]
R ()
C,) X =k —> %
What's the kind of Assoc? ‘R (=)
(=) X = *x > %

Data Declarations (Bool)

data Bool = False | True

bt

We're introducing a new type constructor Bool =~ We're introducing two new data constructors
False and True
>>> R Bool

Bool :: % >>> 't True
True :: Bool

>>> :t False
False :: Bool

Data Declarations

 Use keyword data to declare a new datatype.

* When we're defining a new datatype by data, we're actually
* |ntroducing a new type constructor
* |ntroducing some new data constructors

* only way to construct the inhabitant of this type.

Data Declarations (Maybe)

data Maybe a = Nothing | Just a

S

We're introducing a new type constructor ~ YVe're introducing two new data constructors

Maybe Nothing and Just

>>> :R Maybe >>> :t Nothing

Maybe :: *x —> % Nothing :: Maybe a
>>> :R Maybe Int >>> it Just

Maybe Int :: * Just :: a —> Maybe a

>>> € Just True
Just True :: Maybe Int

Pattern matching is the only way to eliminate/destruct constructors.

Newtype Declaration

newtype Nat N Int
data Nat = N Int
type Nat = Int

* For a new type with a single constructor, it can be declared by a newtype

* newtype (vs.data) brings an efficiency benefit

~olding Over Datatypes

~olding Over Expressions

data Expr = Val Int
| Add Expr Expr
| Mul Expr Expr
size :: Expr — Int

size (Val n) =1
size (Add x y) = size X + size y
size (Mul x y) = size X + size vy

eval :: Expr — Int

eval (Val n) = n

eval (Add x y) = eval x + eval vy
eval (Mul x y) = eval x * eval vy

~olding Over Expressions

foldExpr :: (Int > a) > (a > a > a) - (a > a = a) = Expr — a
foldExpr v _ _ (vVal n) = v n

foldExpr v a m (Add x y) = a (foldExpr v a m x) (foldExpr v .a m vy)
foldExpr v.a m (Mul x y) = m (foldExpr v a m x) (foldExpr v.a m vy)

+

foldExpr (_ — 1)
foldexpr (\x = x)

size' (+) (+)
eval' (+) (%)

*

Question: Printing Expressions

Implement printExpr function using foldExpr and binary.

import Text.Printf
foldExpr :: (Int > a) > (a > a > a) - (a > a — a) = Expr — a

binary :: String — String — String — String
binary op x y = printf "(%s %s %s)" x op vy

> printExpr (Add (val 1) (Mul (val 2) (val 3)))
"(1 + (2 % 3))"

Question: Printing Expressions

import Text.Printf

binary :: String — String — String — String
binary op x y = printf "(%s %s %s)" x op vy

printExpr :: Expr — String

printExpr (Val n) = show n

printExpr (Add x y) = binary "+" (printExpr x) (printExpr vy)
printExpr (Mul x y) = binary "*" (printExpr x) (printExpr y)

> printExpr (Add (val 1) (Mul (val 2) (val 3)))
"(1 + (2 % 3))"

printExpr = foldExpr show (binary "+") (binary "=x")

Question: Collect

Implement a function that collects with foldExpr, which collects all the
numbers (in the Val case) in an expression.

collect :: Expr — [Int]

collect :: Expr — [Int]
collect = foldExpr (\x — [x]) (+) (++)

~urther Reading: Catamorphism

Recently I've finally started to feel like | understand catamorphisms. | wrote some about them in
a recent answer, but briefly | would say a catamorphism for a type abstracts over the process of

12 recursively traversing a value of that type, with the pattern matches on that type reified into one
function for each constructor the type has. While | would welcome any corrections on this point
or on the longer version in the answer of mine linked above, | think | have this more or less down
and that is not the subject of this question, just some background.

Once | realized that the functions you pass to a catamorphism correspond exactly to the type's
constructors, and the arguments of those functions likewise correspond to the types of those
constructors' fields, it all suddenly feels quite mechanical and | don't see where there is any
wiggle room for alternate implementations.

For example, | just made up this silly type, with no real concept of what its structure "means",
and derived a catamorphism for it. | don't see any other way | could define a general-purpose
fold over this type:

data X a b f

xCata :: (Int -=> b —> r)
- r
-> (fa->r —>r)
-> (a —> r)
-> X abf
- r
xCata a b cd v = case v of
Ailix->aix
B->b
Cfx->cf (xCata a b cd x)
D x ->d x

https://stackoverflow.com/questions/4656 | | 25/does-each-type-have-a-unique-catamorphism

~olding Over [rees

data Tree a = Leaf
| Node (Tree a) a (Tree a)

* |t parameterizes the data.
* |t contains two recursive structures.
* multiple choices to traverse the structure

* Pre-order, In-order and Post-order

~olding Over Irees (Cheat)

{-# LANGUAGE DeriveFoldable #-}
data Tree a = Leaf

| Node (Tree a) a (Tree a) deriving (Show, Eq, Foldable)

foldTree = foldr

foldTree :: (a > b > b) > b > Tree a = b
foldTree base Leaf = base
foldTree fn base (Node left a right) = foldTree fn base' left

where
base' = fn a base'’
base'' = foldTree fn base right

~olding Over Irees (General)

Leaf

data Tree a =
| Node (Tree a) a (Tree a)

foldr :: (a -2 b - b) - b = [a] = b
foldr f v [] = v
foldr f v (x:xs) = f x (foldr f v xs)

foldTree :: (b > a =2 b = b) =2 b = Tree a = b
foldTree f z Leaf = zZ
foldTree f z (Node 1 a r) = f (foldTree f z 1) a (foldTree f z r)

Folding Over [rees (Ad-hoc)

foldTreePos :: (a - b = b) > b = Tree a = b
foldTreePos f z Leaf = Z
foldTreePos f z (Node 1 a r) = f a (foldTreePos f (foldTreePos f z 1) r)

foldTreePre :: (a - b - b) > b = Tree a = b
foldTreePre f z Leaf = z
foldTreePre f z (Node 1 a r) = foldTreePre f (foldTreePre f (f a z) 1) r

foldTreeIn :: (a =2 b = b) > b = Tree a = b
foldTreeIn f z Leaf = z
foldTreeIn f z (Node 1 a r) = foldTreeIn f (f a (foldTreeIn f z 1)) r

Thank youl!

