
COMP3258
Functional Programming

Tutorial Session 5: Datatypes

Table of Contents

• Datatypes (Data, Types, Kinds)

• Classes

• Folding Over Datatypes

Review

• Type Declarations

• Data Declarations

• Newtype Declarations

Type Declarations

type String = [Char]

type Pos = (Int, Int)

type Trans = Pos -> Pos

type Pair a = (a, a)

type Assoc k v = [(k, v)]

• Use type keyword to declare a new type

• Use type constructor to construct a type

• 0-argument type constructor

• n-argument type constructor

Type Declarations (Kinds)

type String = [Char]

type Pos = (Int, Int)

type Trans = Pos -> Pos

type Pair a = (a, a)

type Assoc k v = [(k, v)]

• Types have kinds (the type of types)

• Use :k or :kind to ask for it

>>> :k String

String :: *

 
>>> :k []

[] :: * -> *

>>> :k (,)

(,) :: * -> * -> *

>>> :k (->)

(->) :: * -> * -> *

What's the kind of Assoc?

Data Declarations (Bool)
data Bool = False | True

We're introducing a new type constructor Bool

>>> :k Bool

Bool :: *

We're introducing two new data constructors
False and True

>>> :t True

True :: Bool 

>>> :t False

False :: Bool

Data Declarations

• Use keyword data to declare a new datatype.

• When we're defining a new datatype by data, we're actually

• Introducing a new type constructor

• Introducing some new data constructors

• only way to construct the inhabitant of this type.

Data Declarations (Maybe)
data Maybe a = Nothing | Just a

We're introducing a new type constructor
Maybe

>>> :k Maybe

Maybe :: * -> *

>>> :k Maybe Int

Maybe Int :: *

We're introducing two new data constructors
Nothing and Just

>>> :t Nothing

Nothing :: Maybe a

>>> :t Just

Just :: a -> Maybe a

>>> :t Just True

Just True :: Maybe Int

Pattern matching is the only way to eliminate/destruct constructors.

Newtype Declaration

• For a new type with a single constructor, it can be declared by a newtype

• newtype (vs. data) brings an efficiency benefit

newtype Nat = N Int

data Nat = N Int

type Nat = Int

Folding Over Datatypes

Folding Over Expressions
data Expr = Val Int

 | Add Expr Expr

 | Mul Expr Expr

size :: Expr -> Int

size (Val n) = 1

size (Add x y) = size x + size y

size (Mul x y) = size x + size y

eval :: Expr -> Int

eval (Val n) = n

eval (Add x y) = eval x + eval y

eval (Mul x y) = eval x * eval y

Folding Over Expressions

foldExpr :: (Int -> a) -> (a -> a -> a) -> (a -> a -> a) -> Expr -> a

foldExpr v _ _ (Val n) = v n

foldExpr v a m (Add x y) = a (foldExpr v a m x) (foldExpr v a m y)

foldExpr v a m (Mul x y) = m (foldExpr v a m x) (foldExpr v a m y)

size' = foldExpr (_ -> 1) (+) (+)

eval' = foldExpr (\x -> x) (+) (*)

Question: Printing Expressions

import Text.Printf

foldExpr :: (Int -> a) -> (a -> a -> a) -> (a -> a -> a) -> Expr -> a

binary :: String -> String -> String -> String

binary op x y = printf "(%s %s %s)" x op y

> printExpr (Add (Val 1) (Mul (Val 2) (Val 3)))

"(1 + (2 * 3))"

Implement printExpr function using foldExpr and binary.

Question: Printing Expressions
import Text.Printf

binary :: String -> String -> String -> String

binary op x y = printf "(%s %s %s)" x op y

printExpr :: Expr -> String

printExpr (Val n) = show n

printExpr (Add x y) = binary "+" (printExpr x) (printExpr y)

printExpr (Mul x y) = binary "*" (printExpr x) (printExpr y)

> printExpr (Add (Val 1) (Mul (Val 2) (Val 3)))

"(1 + (2 * 3))"

printExpr = foldExpr show (binary "+") (binary "*")

Question: Collect
Implement a function that collects with foldExpr, which collects all the
numbers (in the Val case) in an expression.

collect :: Expr -> [Int]

collect :: Expr -> [Int]

collect = foldExpr (\x -> [x]) (++) (++)

Further Reading: Catamorphism

https://stackoverflow.com/questions/46561125/does-each-type-have-a-unique-catamorphism

Folding Over Trees

• It parameterizes the data.

• It contains two recursive structures.

• multiple choices to traverse the structure

• Pre-order, In-order and Post-order

data Tree a = Leaf

 | Node (Tree a) a (Tree a)

Folding Over Trees (Cheat)
{-# LANGUAGE DeriveFoldable #-} 
data Tree a = Leaf

 | Node (Tree a) a (Tree a) deriving (Show, Eq, Foldable)

foldTree = foldr

 
foldTree :: (a -> b -> b) -> b -> Tree a -> b

foldTree _ base Leaf = base

foldTree fn base (Node left a right) = foldTree fn base' left

 where

 base' = fn a base''

 base'' = foldTree fn base right

Folding Over Trees (General)

data Tree a = Leaf

 | Node (Tree a) a (Tree a)

 
foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f v [] = v

foldr f v (x:xs) = f x (foldr f v xs)

foldTree :: (b -> a -> b -> b) -> b -> Tree a -> b

foldTree f z Leaf = z

foldTree f z (Node l a r) = f (foldTree f z l) a (foldTree f z r)

Folding Over Trees (Ad-hoc)
foldTreePos :: (a -> b -> b) -> b -> Tree a -> b

foldTreePos f z Leaf = z

foldTreePos f z (Node l a r) = f a (foldTreePos f (foldTreePos f z l) r)

foldTreePre :: (a -> b -> b) -> b -> Tree a -> b

foldTreePre f z Leaf = z

foldTreePre f z (Node l a r) = foldTreePre f (foldTreePre f (f a z) l) r

foldTreeIn :: (a -> b -> b) -> b -> Tree a -> b

foldTreeIn f z Leaf = z

foldTreeIn f z (Node l a r) = foldTreeIn f (f a (foldTreeIn f z l)) r

Thank you!

