
COMP3258
Functional Programming

Tutorial Session 5: Datatypes

Table of Contents

• Datatypes (Data, Types, Kinds)

• Classes

• Folding Over Datatypes

Review

• Type Declarations

• Data Declarations

• Newtype Declarations

Type Declarations

type String = [Char]
type Pos = (Int, Int)
type Trans = Pos ! Pos

type Pair a = (a, a)
type Assoc k v = [(k, v)]

• Use type keyword to declare a new type

• Use type constructor to construct a type

• 0-argument type constructor

• n-argument type constructor

Type Declarations (Kinds)

type String = [Char]
type Pos = (Int, Int)
type Trans = Pos ! Pos

type Pair a = (a, a)
type Assoc k v = [(k, v)]

• Types have kinds (the type of types)

• Use :k or :kind to ask for it

>>> :k String
String ! *

>>> :k []
[] ! * ! *

>>> :k (,)
(,) ! * ! * ! *

>>> :k (!)
(!) ! * ! * ! *

What's the kind of Assoc?

Data Declarations (Bool)
data Bool = False | True

We're introducing a new type constructor Bool

>>> :k Bool
Bool ! *

We're introducing two new data constructors
False and True

>>> :t True
True ! Bool

>>> :t False
False ! Bool

Data Declarations

• Use keyword data to declare a new datatype.

• When we're defining a new datatype by data, we're actually

• Introducing a new type constructor

• Introducing some new data constructors

• only way to construct the inhabitant of this type.

Data Declarations (Maybe)
data Maybe a = Nothing | Just a

We're introducing a new type constructor
Maybe

>>> :k Maybe
Maybe ! * ! *

>>> :k Maybe Int
Maybe Int ! *

We're introducing two new data constructors
Nothing and Just

>>> :t Nothing
Nothing ! Maybe a

>>> :t Just
Just ! a ! Maybe a

>>> :t Just True
Just True ! Maybe Int

Pattern matching is the only way to eliminate/destruct constructors.

Newtype Declaration

• For a new type with a single constructor, it can be declared by a newtype

• newtype (vs. data) brings an efficiency benefit

newtype Nat = N Int
data Nat = N Int
type Nat = Int

Folding Over Datatypes

Folding Over Expressions
data Expr = Val Int
 | Add Expr Expr
 | Mul Expr Expr

size ::: Expr ->- Int
size (Val n) = 1
size (Add x y) = size x + size y
size (Mul x y) = size x + size y

eval ::: Expr ->- Int
eval (Val n) = n
eval (Add x y) = eval x + eval y
eval (Mul x y) = eval x * eval y

Folding Over Expressions

foldExpr ::: (Int ->- a) ->- (a ->- a ->- a) ->- (a ->- a ->- a) ->- Expr ->- a
foldExpr v _ _ (Val n) = v n
foldExpr v a m (Add x y) = a (foldExpr v a m x) (foldExpr v a m y)
foldExpr v a m (Mul x y) = m (foldExpr v a m x) (foldExpr v a m y)

size' = foldExpr (_ ->- 1) (+) (+)
eval' = foldExpr (\x ->- x) (+) (*)

Question: Printing Expressions

import Text.Printf
foldExpr ::: (Int ->- a) ->- (a ->- a ->- a) ->- (a ->- a ->- a) ->- Expr ->- a

binary ::: String ->- String ->- String ->- String
binary op x y = printf "(%s %s %s)" x op y

> printExpr (Add (Val 1) (Mul (Val 2) (Val 3)))
"(1 + (2 * 3))"

Implement printExpr function using foldExpr and binary.

Question: Printing Expressions
import Text.Printf

binary ::: String ->- String ->- String ->- String
binary op x y = printf "(%s %s %s)" x op y

printExpr ::: Expr ->- String
printExpr (Val n) = show n
printExpr (Add x y) = binary "+" (printExpr x) (printExpr y)
printExpr (Mul x y) = binary "*" (printExpr x) (printExpr y)

> printExpr (Add (Val 1) (Mul (Val 2) (Val 3)))
"(1 + (2 * 3))"

printExpr = foldExpr show (binary "+") (binary "*")

Question: Collect
Implement a function that collects with foldExpr, which collects all the
numbers (in the Val case) in an expression.

collect ::: Expr ->- [Int]

collect ::: Expr ->- [Int]
collect = foldExpr (\x ->- [x]) (+++) (+++)

Further Reading: Catamorphism

https://stackoverflow.com/questions/46561125/does-each-type-have-a-unique-catamorphism

Folding Over Trees

• It parameterizes the data.

• It contains two recursive structures.

• multiple choices to traverse the structure

• Pre-order, In-order and Post-order

data Tree a = Leaf
 | Node (Tree a) a (Tree a)

Folding Over Trees (Cheat)
{-# LANGUAGE DeriveFoldable #-}
data Tree a = Leaf
 | Node (Tree a) a (Tree a) deriving (Show, Eq, Foldable)

foldTree = foldr

foldTree ::: (a ->- b ->- b) ->- b ->- Tree a ->- b
foldTree _ base Leaf = base
foldTree fn base (Node left a right) = foldTree fn base' left
 where
 base' = fn a base''
 base'' = foldTree fn base right

Folding Over Trees (General)

data Tree a = Leaf
 | Node (Tree a) a (Tree a)

foldr ::: (a ->- b ->- b) ->- b ->- [a] ->- b
foldr f v [] = v
foldr f v (x:xs) = f x (foldr f v xs)

foldTree ::: (b ->- a ->- b ->- b) ->- b ->- Tree a ->- b
foldTree f z Leaf = z
foldTree f z (Node l a r) = f (foldTree f z l) a (foldTree f z r)

Folding Over Trees (Ad-hoc)
foldTreePos ::: (a ->- b ->- b) ->- b ->- Tree a ->- b
foldTreePos f z Leaf = z
foldTreePos f z (Node l a r) = f a (foldTreePos f (foldTreePos f z l) r)

foldTreePre ::: (a ->- b ->- b) ->- b ->- Tree a ->- b
foldTreePre f z Leaf = z
foldTreePre f z (Node l a r) = foldTreePre f (foldTreePre f (f a z) l) r

foldTreeIn ::: (a ->- b ->- b) ->- b ->- Tree a ->- b
foldTreeIn f z Leaf = z
foldTreeIn f z (Node l a r) = foldTreeIn f (f a (foldTreeIn f z l)) r

Thank you!

