
COMP3258
Functional Programming

Tutorial Session 4: List Comprehension and Higher-order Functions

List Comprehensions

[x^2 | x <-- [1...5]]
Generators

List Comprehensions

[(x, y) | x <-- [1...5], y <-- [1...10]]
Multiple (Dependent) Generators

List Comprehensions

[(x, y) | x <-- [1...5] | y <-- [1...10]]
Parallel Generators (with ParallelListComp extension)

Refer to: https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/parallel_list_comprehensions.html

List Comprehensions

[x^2 | x <-- [1...5], even x]
Guards

List Comprehensions

[y | x <-- [1...5], let y = x^2]
Local Declaration

Question 1 (3 mins)
A triple of positive integers is called Pythagorean if .

Use list comprehension to implement the function pythagoreans that finds all pythagorean triples
with , , and all less than or equal to the parameter.

(x, y, z) x2 + y2 = z2

x y z

pythagoreans ::: Int ->- [(Int, Int, Int)]

> pythagoreans 5
[(3,4,5),(4,3,5)]

pythagoreans ::: Int ->- [(Int, Int, Int)]
pythagoreans n = [(x, y, z) | x <-- [1...n], y <-- [1...n], z <-- [1...n], x^2 + y^2 === z^2]

Question 2 (3 mins)
A positive integer is perfect if it's equal to the sum of all of its factors, excluding the number
itself.

Use list comprehension, to implement a function perfects that finds all perfect numbers less than
its parameter.

perfects ::: Int ->- [Int]

> perfects 500
[6,28,496]

perfects ::: Int ->- [Int]
perfects n = [x | x <-- [1...n], sum (factors x) === x]

High-order Functions

• map, filter, all, any, zipWith

map

filter

zipWith

Question 3 (2 mins)
Define a function filtmap that takes expressions like the list comprehension
[f x | x <- xs, p x] using the functions map and filter.

filtmap ! (a ! b) ! (a ! Bool) ! [a] ! [b]

filtmap ::: (a ->- b) ->- (a ->- Bool) ->- [a] ->- [b]
filtmap f p = map f . filter p

Question 4 (2 mins)
Implement the library function zipWith with zip and map.

zipWith ! (a ! b ! c) ! [a] ! [b] ! [c]

zipWith ::: (a ->- b ->- c) ->- [a] ->- [b] ->- [c]
zipWith f xs ys = map (\(x,y) ->- f x y) (zip xs ys)

Folding Right and Left

Folding Right Patterns

sum ! [Int] ! Int
sum [] = 0
sum (x:xs) = x + (sum xs)

product ! [Int] ! Int
product [] = 1
product (x:xs) = x * (product xs)

all ! (a ! Bool) ! [a] ! Bool
all p [] = True
all p (x:xs) = (p x) ! (all p xs)

Folding Right Patterns

sum ! [Int] ! Int
sum [] = 0
sum (x:xs) = (+) x (sum xs)

product ! [Int] ! Int
product [] = 1
product (x:xs) = (*) x (product xs)

all ! (a ! Bool) ! [a] ! Bool
all p [] = True
all p (x:xs) = (!) (p x) (all p xs)

Folding Right Patterns

func [] = z
func (x:xs) = f x (func xs)

foldr ! (a ! b ! b) ! b ! [a] ! b

Using foldr

sum ! [Int] ! Int
sum xs = foldr (+) 0 xs

product ! [Int] ! Int
product xs = foldr (*) 1 xs

all ! (a ! Bool) ! [a] ! Bool
all p xs = foldr (\x r ! p x ! r) True xs

Folding Left Patterns
sum ! [Int] ! Int
sum = sum' 0
 where
 sum' v [] = v
 sum' v (x:xs) = sum' (v+x) xs

product ! [Int] ! Int
product = product' 1
 where
 product' v [] = v
 product' v (x:xs) = product' (v*x) xs

all ! (a ! Bool) ! [a] ! Bool
all p xs = all' True
 where
 all' v [] = v
 all' v (x:xs) = all' (v ! p x) xs

Folding Left Patterns

func v [] = v
func v (x:xs) = func (f v x) xs

foldr ! (a ! b ! b) ! b ! [a] ! b

foldr vs. foldl

foldr ! (a ! b ! b) ! b ! [a] ! b

foldr (-) 0 (1 : (2 : (3 : [])))
= 1 - (2 - (3 - 0))
= 2

foldl ! (b ! a ! b) ! b ! [a] ! b

foldl (-) 0 (1 : (2 : (3 : [])))
= ((0 - 1) - 2) - 3
= -6

foldr vs. foldl

• Traverse (same direction) + Folding (different)

• Circuit Cut
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

Question 5 (5 mins)
Re-implement the following library functions with a single fold (foldl)

• length, filter, unzip, reverse

length ::: [a] ->- Int
length = foldl (\r x ->- r + 1) 0

filter ::: (a ->- Bool) ->- [a] ->- [a]
filter p = foldl (\r x ->- if p x then r +++ [x] else r) []

unzip ::: [(a, b)] ->- ([a], [b])
unzip = foldl (\(as, bs) (xa, xb) ->- (as +++ [xa], bs +++ [xb])) ([],[])

reverse ::: [a] ->- [a]
reverse = foldl (\r x ->- x : r) []

Lazy Evaluation

Lazy Evaluation

• Avoids doing unnecessary evaluation;

• Ensures termination whenever possible;

• Supports programming with infinite lists;

• Allows programs to be more modular

Lazy Evaluation (Recipe)

• It evaluates outside-in instead of inside-out.

• It evaluates inside only when needed.

• It evaluates only enough.

square x = x * x

square (1+2)
! (1+2) * (1+2)
! 3 * (1+2)
! 3 * 3
! 9

square (1+2)
! square 3
! 3 * 3
! 9

Outside-in (aka. outermost) Inside-out (innermost)

Graph Reduction (Optional)
square (1+2)

Graph Reduction (Optional)

Unlike tree representation,
the graph can share an expression

Graph Reduction (Optional)

Efficiency scales modularly

prefix ! Eq a ! [a] ! [a] ! Bool
prefix xs ys = and (zipWith (!) xs ys)

prefix "Haskell" "eager"

Efficiency scales modularly

prefix ! Eq a ! [a] ! [a] ! Bool
prefix xs ys = and (zipWith (!) xs ys)

prefix "Haskell" "eager"
! and (zipWith (!) "Haskell "eager")

Efficiency scales modularly

prefix ! Eq a ! [a] ! [a] ! Bool
prefix xs ys = and (zipWith (!) xs ys)

prefix "Haskell" "eager"
! and (zipWith (!) "Haskell "eager")
! and ('H' ! 'e' : zipWith (!) "askell" "ager")

Efficiency scales modularly

prefix ! Eq a ! [a] ! [a] ! Bool
prefix xs ys = and (zipWith (!) xs ys)

prefix "Haskell" "eager"
! and (zipWith (!) "Haskell "eager")
! and ('H' ! 'e' : zipWith (!) "askell" "ager")
! 'H' ! 'e' ! and (zipWith (!) "askell" "ager")

Efficiency scales modularly

prefix ! Eq a ! [a] ! [a] ! Bool
prefix xs ys = and (zipWith (!) xs ys)

prefix "Haskell" "eager"
! and (zipWith (!) "Haskell "eager")
! and ('H' ! 'e' : zipWith (!) "askell" "ager")
! 'H' ! 'e' ! and (zipWith (!) "askell" "ager")
! False ! and (zipWith (!) "askell" "ager")

Efficiency scales modularly

prefix ! Eq a ! [a] ! [a] ! Bool
prefix xs ys = and (zipWith (!) xs ys)

prefix "Haskell" "eager"
! and (zipWith (!) "Haskell "eager")
! and ('H' ! 'e' : zipWith (!) "askell" "ager")
! 'H' ! 'e' ! and (zipWith (!) "askell" "ager")
! False ! and (zipWith (!) "askell" "ager")
! False

demand-driven evaluation

