COMP32586
-unctional Programming

Tutorial Session 4: List Comprehension and Higher-order Functions

List Comprehensions

- o]l

[x*2 | «— [1.

Generators

List Comprehensions

[(x, y) | x « [1..5], y < [1..10]]

Multlple (Dependent) Generators

List Comprehensions

LOGy) e e 1151 1y < 11..10]]

Parallel Generators (with ParallelListComp extension)

Refer to: https://ghc.gitlab.haskell.org/ghc/doc/users_guidelexts/parallel_list_comprehensions.html

List Comprehensions

[x"2 | x « [1..5], even

Guards

List Comprehensions

[v | x « [1..5], V

Local Declaration

Question | (3 mins)

A triple (x,, 7) of positive integers is called Pythagorean if x> + y* = z°.

Use list comprehension to implement the function pythagoreans that finds all pythagorean triples
with x, y,and z all less than or equal to the parameter.

pythagoreans :: Int — [(Int, Int, Int)]
> pythagoreans 5

[(37475)7(47375)]

oythagoreans :: Int — [(Int, Int, Int)]
oythagoreans n = [(x, v, z) | x « [1..n], v « [1..n], z « [1..n], x"2 + y"2 = z"2]

Question 2 (3 mins)

A positive integer is perfect if it's equal to the sum of all of its factors, excluding the number
itself.

Use list comprehension, to implement a function perfects that finds all perfect numbers less than
Its parameter.

perfects :: Int — [Int]

> perfects 500
[6,28,496]

nerfects :: Int — [Int]
nerfects n = [x | x < [1..n], sum (factors x) = x]

High-order runctions

e map, filter, all, any, zipWith

-- | \(\mathcal{O}(n)\). 'map' @f xs@ is the list obtained by applying @f@ to
-- each element of @xs@, i.e.,

-—- > map £ [x1l, x2, ..., Xn]
-- >map £ [x1, x2, ...] ==

—= >>> map (+1) [1, 2, 3]

o [21314]

map :: (a -> b) =-> [a] -> [Db]

{-# NOINLINE [0] map #-}
-- We want the RULEs "map" and "map/coerce" to fire first.
-— map 1s recursive, so won't inline anyway,
-- but saying so i1s more explicit, and silences warnings

map _ [] = []
map f (x:xs) = f x : map £ xs

filter

-- | \(\mathcal{0}(n)\). 'filter',6 applied to a predicate and a list, returns
—— the list of those elements that satisfy the predicate; 1i.e.,

-— > filter p xs = [X | x <- xs, p X]
-— >>> filter odd [1, 2, 3]

B [113]

{-# NOINLINE [1] filter #-}

filter :: (a -> Bool) -> [a] -> [a]

filter pred [] =[]
filter pred (x:xs)
pred x = x : filter pred xs

otherwise = filter pred xs

—_— D> ZipWith (+) [1, 2, 3] [4, 5, 6]
o [51719]
-— 'z1pWith' 1s right-lazy:

-—= >>> let £ = undefined
—— >>> zipWith £ [] undefined

-= [

-- 'zipWith' 1s capable of list fusion, but i1t 1s restricted to 1its
-- first list argument and its resulting list.
{-# NOINLINE [1l] zipWith #-} -- See Note [Fusion for zipN/zipWithN]
zipWith :: (a->b->c) -> [a]->[b]->[c]
zipWith £ = go
where
go [] _ = []
go _ []1 =[]
go (xX:xXs) (y:ys) = f£f Xy : go Xs ys

Question 3 (2 mins)

Define a function filtmap that takes expressions like the list comprehension
[f x | x <-xs, p x] using the functions map and filter.

filtmap :: (a - b) - (a —» Bool) — [a] — [b]

filtmap :: (a - b) — (a — Bool) — [a] — [b]
filtmap f p = map f . filter p

Question 4 (2 mins)

Implement the library function zipWith with zip and map.

zipWith 1 (@a > b > c) —» [a] = [b] —» [c]

zipwith :: (a - b —» ¢) — [a] — [b] — [c]
zipWith f xs ys = map (\(x,y) — f x y) (zip xs ys)

Folding Right and Left

~olding Right Patterns

sum :: [Int] — Int
sum [] = 0
sum (x:xs) = x + (sum xs)

product :: [Int] — Int
product [] = 1
product (x:xs) = x * (product xs)

all :: (a = Bool) — [a] — Bool
all p [] True
all p (x:xs) = (p x) & (all p xs)

~olding Right Patterns

sum :: [Int] — Int
sum [] = 0
sum (x:xs) = (+) x (sum xs)

product :: [Int] — Int
product [] = 1
product (x:xs) = (¥) x (product xs)

all :: (a = Bool) — [a] — Bool
all p [] True
all p (x:xs) = (&) (p x) (all p xs)

-olding Right Patterns

func []

Z
func (x:xs) f x (func xs)

foldr :: (@ > b - b) > b > [a] - b

Using foldr

sum :: [Int] — Int
sum xs = foldr (+) 0 xs

product :: [Int] — Int
product xs = foldr (%) 1 xs

all :: (a = Bool) — [a] — Bool
all p xs = foldr (A\x r > p x & r) True Xs

~olding Left Patterns

sum :: [Int] — Int
sum = sum' ©
where

sum' v [] = v
sum' v (x:xs) = sum' (v+Xx) XS

product :: [Int] — Int
product = product' 1
where
product’ v [] = v
product' v (x:xs) = product' (v#x) Xs

all :: (a = Bool) — [a] — Bool
all p xs = all' True
where
all' v [] = v
all' v (x:xs) = all' (v & p x) xs

~olding Left Patterns

func v []

V
func v (x:xs) func (f v x) xs

foldr :: (@ > b - b) > b > [a] - b

foldr vs. foldl

foldr :: (@ > b - b) > b > la] > b

foldr‘ (-) o0 (1 (2 : (3 :11)))
1 - (2 - (3 —@))
= 2

foldl :: (b > a —>b) » b —>la] - b

Foldl (=)o (1 :(2:@:1D))
CC@ - 1) - 2) - 3

foldr vs. foldl

* Traverse (same direction) + Folding (different)

e Circuit Cut
foldr £ z []

foldr f z (x:xs)

Z
f x (foldr f z xs)

foldl f z []
foldl f z (x:xs)

Z
foldl f (f z x) xs

Question 5 (5 mins)

Re-implement the following library functions with a single fold (foldl)

e length, filter, unzip, reverse

length :: [a] — Int
length = foldl (\r x > r + 1) 0

filter :: (a — Bool) — [a]l] — [al]
filter p = foldl (\r x = 1f p x then r ++ [x] else r) []

unzip :: [(Ca, b)] — ([al, [b])
unzip = foldl (\(as, bs) (xa, xb) — (as ++ [xal, bs + [xbl)) ([]1,[])

reverse :: [a] — [a]
reverse = foldl (\r x = x : r) []

Lazy Evaluation

L azy Evaluation

Avoids doing unnecessary evaluation;
Ensures termination whenever possible;
Supports programming with infinite lists;

Allows programs to be more modular

L azy Evaluation (Recipe)

* |t evaluates outside-in instead of inside-out.
* |t evaluates inside only when needed.

* |t evaluates only enough.

Square X = X * X
Outside-in (aka. outermost) Inside-out (innermost)
square (1+2) square (1+2)
= (1+2) * (1+2) = square 3
= 3 x (1+2) = 3 % 3
= 3 % 3 = 9

= 3

Graph Reduction (Optional)

square (1+2)

sguare

J

Graph Reduction (Optional)

square | |) |- _YIT
)

Graph Reduction (Optional)

cfficiency scales modularly

prefix :: Eq a = [a] = [a] — Bool
prefix xs ys = and (zipWith (=) xs ys)

prefix "Haskell" "eager’

cfficiency scales modularly

prefix :: Eq a = [a] = [a] — Bool
prefix xs ys = and (zipWith (=) xs ys)

prefix "Haskell" "eager’
= and (zipWith (=) "Haskell "eager")

cfficiency scales modularly

prefix :: Eq a = [a] = [a] — Bool
prefix xs ys = and (zipWith (=) xs ys)

prefix "HasRell" "eager’
= and (zipWith (=) "Haskell "eager")
= and ('H' = 'e' : zipWith (=) "askell" "ager")

cfficiency scales modularly

prefix :: Eq a = [a] = [a] — Bool
prefix xs ys = and (zipWith (=) xs ys)

prefix "Haskell" "eager’

= and (zipWith (=) "Haskell "eager")

= and ('H' = 'e' : zipWith (=) "askell" "ager")
= 'H' = 'e' & and (zipWith (=) "askell" "ager")

cfficiency scales modularly

prefix :: Eq a = [a] = [a] — Bool
prefix xs ys = and (zipWith (=) xs ys)

prefix "Haskell" "eager"”

—

—
—
—

and (zipWith (=) "Haskell "eager")

and ('H' = 'e' : zipWith (=) "askell" "ager")
'H' = 'e' & and (zipWwith (=) "askell" "ager")
False 8 and (zipWith (=) "askell" "ager")

cfficiency scales modularly

prefix ::

FEq a = [a] — [a] — Bool

prefix xs ys = and (zipWith (=) xs ys)

prefix "HaskRell" "eager"”

—
—
—
—
—

and (zipWith (=) "Haskell "eager")

and ('H' = 'e' : zipWith (=) "askell" "ager")
'H' = 'e' & and (zipWwith (=) "askell" "ager")
False & and (zipWith (=) "askell" "ager")
False

demand-driven evaluation

