
COMP3258
Functional Programming

Tutorial Session 4: List Comprehension and Higher-order Functions

List Comprehensions

[x^2 | x <- [1..5]]
Generators

List Comprehensions

[(x, y) | x <- [1..5], y <- [1..10]]
Multiple (Dependent) Generators

List Comprehensions

[(x, y) | x <- [1..5] | y <- [1..10]]
Parallel Generators (with ParallelListComp extension)

Refer to: https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/parallel_list_comprehensions.html

List Comprehensions

[x^2 | x <- [1..5], even x]
Guards

List Comprehensions

[y | x <- [1..5], let y = x^2]
Local Declaration

Question 1 (3 mins)
A triple of positive integers is called Pythagorean if .

Use list comprehension to implement the function pythagoreans that finds all pythagorean triples
with , , and all less than or equal to the parameter.

(x, y, z) x2 + y2 = z2

x y z

pythagoreans :: Int -> [(Int, Int, Int)]

> pythagoreans 5

[(3,4,5),(4,3,5)]

pythagoreans :: Int -> [(Int, Int, Int)]

pythagoreans n = [(x, y, z) | x <- [1..n], y <- [1..n], z <- [1..n], x^2 + y^2 == z^2]

Question 2 (3 mins)
A positive integer is perfect if it's equal to the sum of all of its factors, excluding the number
itself.

Use list comprehension, to implement a function perfects that finds all perfect numbers less than
its parameter.

perfects :: Int -> [Int]

> perfects 500

[6,28,496]

perfects :: Int -> [Int]

perfects n = [x | x <- [1..n], sum (factors x) == x]

High-order Functions

• map, filter, all, any, zipWith

map

filter

zipWith

Question 3 (2 mins)
Define a function filtmap that takes expressions like the list comprehension
[f x | x <- xs, p x] using the functions map and filter.

filtmap :: (a -> b) -> (a -> Bool) -> [a] -> [b]

filtmap :: (a -> b) -> (a -> Bool) -> [a] -> [b]

filtmap f p = map f . filter p

Question 4 (2 mins)
Implement the library function zipWith with zip and map.

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

zipWith f xs ys = map (\(x,y) -> f x y) (zip xs ys)

Folding Right and Left

Folding Right Patterns

sum :: [Int] -> Int

sum [] = 0

sum (x:xs) = x + (sum xs)

product :: [Int] -> Int

product [] = 1

product (x:xs) = x * (product xs)

all :: (a -> Bool) -> [a] -> Bool

all p [] = True

all p (x:xs) = (p x) && (all p xs)

Folding Right Patterns

sum :: [Int] -> Int

sum [] = 0

sum (x:xs) = (+) x (sum xs)

product :: [Int] -> Int

product [] = 1

product (x:xs) = (*) x (product xs)

all :: (a -> Bool) -> [a] -> Bool

all p [] = True

all p (x:xs) = (&&) (p x) (all p xs)

Folding Right Patterns

func [] = z

func (x:xs) = f x (func xs)

foldr :: (a -> b -> b) -> b -> [a] -> b

Using foldr

sum :: [Int] -> Int

sum xs = foldr (+) 0 xs

product :: [Int] -> Int

product xs = foldr (*) 1 xs

all :: (a -> Bool) -> [a] -> Bool

all p xs = foldr (\x r -> p x && r) True xs

Folding Left Patterns
sum :: [Int] -> Int

sum = sum' 0

 where

 sum' v [] = v

 sum' v (x:xs) = sum' (v+x) xs

product :: [Int] -> Int

product = product' 1

 where

 product' v [] = v

 product' v (x:xs) = product' (v*x) xs

all :: (a -> Bool) -> [a] -> Bool

all p xs = all' True

 where

 all' v [] = v

 all' v (x:xs) = all' (v && p x) xs

Folding Left Patterns

func v [] = v

func v (x:xs) = func (f v x) xs

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr vs. foldl

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr (-) 0 (1 : (2 : (3 : [])))

= 1 - (2 - (3 - 0))

= 2

foldl :: (b -> a -> b) -> b -> [a] -> b

foldl (-) 0 (1 : (2 : (3 : [])))

= ((0 - 1) - 2) - 3

= -6

foldr vs. foldl

• Traverse (same direction) + Folding (different)

• Circuit Cut
foldr f z [] = z

foldr f z (x:xs) = f x (foldr f z xs)

foldl f z [] = z

foldl f z (x:xs) = foldl f (f z x) xs

Question 5 (5 mins)
Re-implement the following library functions with a single fold (foldl)

• length, filter, unzip, reverse

length :: [a] -> Int

length = foldl (\r x -> r + 1) 0

filter :: (a -> Bool) -> [a] -> [a]

filter p = foldl (\r x -> if p x then r ++ [x] else r) []

unzip :: [(a, b)] -> ([a], [b])

unzip = foldl (\(as, bs) (xa, xb) -> (as ++ [xa], bs ++ [xb])) ([],[])

reverse :: [a] -> [a]

reverse = foldl (\r x -> x : r) []

Lazy Evaluation

Lazy Evaluation

• Avoids doing unnecessary evaluation;

• Ensures termination whenever possible;

• Supports programming with infinite lists;

• Allows programs to be more modular

Lazy Evaluation (Recipe)

• It evaluates outside-in instead of inside-out.

• It evaluates inside only when needed.

• It evaluates only enough.

square x = x * x

square (1+2)

=> (1+2) * (1+2)

=> 3 * (1+2)

=> 3 * 3

=> 9

square (1+2)

=> square 3

=> 3 * 3

=> 9

Outside-in (aka. outermost) Inside-out (innermost)

Graph Reduction (Optional)
square (1+2)

Graph Reduction (Optional)

Unlike tree representation,
the graph can share an expression

Graph Reduction (Optional)

Efficiency scales modularly

prefix :: Eq a => [a] -> [a] -> Bool

prefix xs ys = and (zipWith (==) xs ys)

prefix "Haskell" "eager"

Efficiency scales modularly

prefix :: Eq a => [a] -> [a] -> Bool

prefix xs ys = and (zipWith (==) xs ys)

prefix "Haskell" "eager"

=> and (zipWith (==) "Haskell "eager")

Efficiency scales modularly

prefix :: Eq a => [a] -> [a] -> Bool

prefix xs ys = and (zipWith (==) xs ys)

prefix "Haskell" "eager"

=> and (zipWith (==) "Haskell "eager")

=> and ('H' == 'e' : zipWith (==) "askell" "ager")

Efficiency scales modularly

prefix :: Eq a => [a] -> [a] -> Bool

prefix xs ys = and (zipWith (==) xs ys)

prefix "Haskell" "eager"

=> and (zipWith (==) "Haskell "eager")

=> and ('H' == 'e' : zipWith (==) "askell" "ager")

=> 'H' == 'e' && and (zipWith (==) "askell" "ager")

Efficiency scales modularly

prefix :: Eq a => [a] -> [a] -> Bool

prefix xs ys = and (zipWith (==) xs ys)

prefix "Haskell" "eager"

=> and (zipWith (==) "Haskell "eager")

=> and ('H' == 'e' : zipWith (==) "askell" "ager")

=> 'H' == 'e' && and (zipWith (==) "askell" "ager")

=> False && and (zipWith (==) "askell" "ager")

Efficiency scales modularly

prefix :: Eq a => [a] -> [a] -> Bool

prefix xs ys = and (zipWith (==) xs ys)

prefix "Haskell" "eager"

=> and (zipWith (==) "Haskell "eager")

=> and ('H' == 'e' : zipWith (==) "askell" "ager")

=> 'H' == 'e' && and (zipWith (==) "askell" "ager")

=> False && and (zipWith (==) "askell" "ager")

=> False

demand-driven evaluation

