
COMP3258
Functional Programming

Tutorial Session 3: Recursive Functions and Sorting

The 1st Assignment Is Out!

Recipe of the Recursion

• Recursion on Numbers

• base case: 0

• inductive case: n

• Recursion on Lists

• base case: []

• inductive case: (x:xs)

• Recursion on Multiple arguments (e.g., two lists, list and numbers)

• base case

• inductive case

Review Functions (via Hoogle)

• product, length, reverse, zip, drop, (++)

product

length

A Taste of Folding

Credit: https://www.cantab.net/users/antoni.diller/haskell/units/unit06.html

https://www.cantab.net/users/antoni.diller/haskell/units/unit06.html

reverse

Tail Call Optimisation

zip

drop

(++)

Question 1

• Add the following line at the top of your file to avoid name clashes:

import Prelude hiding (concat, and, (!!), replicate, elem)

• Then define those library functions using recursion:

and :: [Bool] -> Bool

concat :: [[a]] -> [a]

replicate :: Int -> a -> [a]

(!!) :: [a] -> Int -> a

elem :: Eq a => a -> [a] -> Bool

Question 1

and :: [Bool] -> Bool

and [] = True

and (x:xs) = x && and xs

concat :: [[a]] -> [a]

concat [] = []

concat (x:xs) = x ++ concat xs

replicate :: Int -> a -> [a]

replicate 0 x = []

replicate n x = x : (replicate (n - 1) x)

(!!) :: [a] -> Int -> a

(!!) [] _ = error "index too large"

(!!) (x:xs) 0 = x

(!!) (x:xs) n = (!!) xs (n - 1)

elem :: Eq a => a -> [a] -> Bool

elem a [] = False

elem a (x:xs) = if a == x then True else elem a xs

Question 2
• Implement a recursive function doubleList which doubles all the elements and

returns the list.

• Implement the function using map and lambda functions.

double :: Int -> Int

double x = x + x

doubleListRec :: [Int] -> [Int]

doubleListRec [] = []

doubleListRec (x:xs) = double x : doubleListRec xs

doubleList = map double

doubleList' = map (\x -> x + x)

Question 3
• Implement a recursive function zipSum, which takes two lists and returns the list

of corresponding sums.

• Implement the function using the library function zipWith and lambda functions.

zipSum :: [Int] -> [Int] -> [Int]

zipSum [] _ = []

zipSum _ [] = []

zipSum (x:xs) (y:ys) = (x + y) : zipSum xs ys

zipSum' = zipWith (+)

Merge Sort

1. Divide the unsorted list into n sublists,
each containing one element (a list of
one element is considered sorted).

2. Repeatedly merge sublists to produce
new sorted sublists until there is only
one sublist remaining. This will be the
sorted list.

Credit: https://www.programiz.com/dsa/merge-sort

Step 1: merge function

• Define a recursive function merge that merges two sorted lists of integers to give
a single sorted list.

merge :: [Int] -> [Int] -> [Int]

merge xs ys = undefined

-- >>> merge [5] [12]

-- [5,12]

-- >>> merge [6] [5, 12]

-- [5,6,12]

-- >>> merge [5, 6, 12] [1, 9, 10]

-- [1,5,6,9,10,12]

Step 2: msort function

• Define a recursive function msort that implements merge sort.

• Hint:

• Lists whose length <= 1 are already sorted;

• The other lists can be sorted by recursively sorting the two halves and merging
the results;

• There is a library function splitAt :: Int -> [a] -> ([a], [a]).

Merge Sort In Haskell
merge :: [Int] -> [Int] -> [Int]

merge [] l = l

merge l [] = l

merge (x:xs) (y:ys) = if x < y then x : merge xs (y:ys) else y : merge (x:xs) ys

msort :: [Int] -> [Int]

msort [] = []

msort [x] = [x]

msort xs = merge (msort l) (msort r)

 where

 (l, r) = splitAt p xs

 p = length xs `div` 2

($) Operator
• It’s called function application operator.

• Why it matters?

• f x (normal function application) has high precedence

• ($) has the lowest precedence

($) :: (a -> b) -> a -> b

f $ x = f x

expr1 = sqrt (3 + 4 + 9)

expr2 = sqrt $ 3 + 4 + 9

(.) Operator
• function composition operator (.) :: (b -> c) -> (a -> b) -> a -> c

(f . g) x = f (g x)

Practice

• Remove parens from the following expression using operators we just learnt.

foo = reverse (take 6 [1..10])

