COMP32586
-unctional Programming

Tutorial Session 3: Recursive Functions and Sorting

The Ist Assisnment [s Out!

Recipe of the Recursion

e Recursion on Numbers * Recursion on Lists
* base case: 0 * base case: [}
* inductive case: n * inductive case: (X:xs)

 Recursion on Multiple arguments (e.g., two lists, list and numbers)
* base case

e inductive case

Review Functions (via Hoogle)

e product, length, reverse, zip, drop, (++)

product

-- | The 'product' function computes the product of the numbers of a
-=- sStructure.

-- ==== _ Examples
-- Basic usage:

-=— >>> product []
-- 1

-= >>> product [42]
-— 42

-= >>> product [1..10]
-- 3628800

-=— >>> product [4.1, 2.0, 1.7]
-= 13.939999999999998

-= >>> product [1..]
-- * Hangs forever *

—— @since 4.8.0.0

product :: Num a => t a -> a

product = getProduct #. foldMap' Product
{-# INLINEABLE product #-}

lengtn

-- ==== Examples
-—- Basilic usage:

-— >>> length []
-= 0

-- >>> length ['a', 'b', 'c']
-- 3

-= >>> length [1..]

-—- * Hangs forever *

-— @since 4.8.0.0

length :: t a -> Int

length = foldl' (\c -> c+l1) O

A laste of rolding

/\ /\

L]

foldr (#) u / \ — / \

L2

/\ /\

Credit: https://www.cantab.net/users/antoni.diller/haskell/units/unit06.html

https://www.cantab.net/users/antoni.diller/haskell/units/unit06.html

FEVEI'SC

- | 'reverse' @xs@ returns the elements of @xs@ in reverse order.
~—— @xs@ must be finite.

-—- >>> reverse |[]

-= []

-— >>> reverse [42]

-- [42]

-—- >>> reverse [2,5,7]

o [71512]

-— >>> reverse [1l..]

-- * Hangs forever *

reverse :: [a] =-> [a]

#1f defined(USE REPORT PRELUDE)

reverse = foldl (flip (:)) [

#else

reverse

where

rev [] a = a Tail Call Optimisation
rev (X:xXs) a = rev Xs (x:a)

#endif

=
Il

rev 1 []

-- | \(\mathcal{O}(\min(m,n))\). 'zip' takes two lists and returns a list of
-—- corresponding pairs.

-- >>> zip [1, 2] ['a', 'b']
- [(1l'a')l(2"b')]

—-— If one input list is shorter than the other, excess elements of the longer
-- list are discarded, even if one of the lists is infinite:

—- >>> zip [1] ['a', 'b']
-- [(1,'a")]

-— >>> zip [1, 2] ['a']
-- [(1,'a")]

-— >>> zip [] [1l..]

-= [

-= >>> zip [1..] []

-= [
-- 'zip' 1is right-lazy:

-— >>> zip [] undefined

-= [

-— >>> zip undefined []
-- *** Exception: Prelude.undefined

-—- 'zip' 1is capable of list fusion, but it is restricted to its
-- first list argument and its resulting list.

{-# NOINLINE [1l] zip #-} -- See Note [Fusion for zipN/zipWithN]
zip :: [a] -> [b] -> [(a,b)]

zip [] _bs =[]

zip _as [] =[]

zip (a:as) (b:bs) (a,b) : zip as bs

dro

| 'drop'

drop

@n xs@ returns the suffix of @xs@

after the first @n@ elements, or @[]@ if @n >=

>>> drop
"World!"
>>> drop
[4,5]

>>> drop

[]

>>> drop
[]

>>> drop
[1,2]
>>> drop
[1,2]

It 1s an
in which
P

6 "Hello World!"

3 [1,2,3,4,5]

3 [1,2]

3 []

(-1) [1,2]

0 [1,2]

instance of the more general 'Data.List.genericDrop’,

@n@ may be of any integral type.
Int -> [a] =-> [a]

#if defined(USE_REPORT PRELUDE)

dro
dro

drop n (_:xs)

P n Xs
p_ []

XS

[]

drop (n-1) Xs

| n <=0

#else /* hack away */
{-# INLINE drop #-}

drop n 1s

| n <=0 = 1s

| otherwise = unsafeDrop n ls

where
-- A version of drop that drops the whole list if given an argument
-- less than 1
unsafeDrop :: Int -> [a] -> [a]
unsafeDrop ! [] =[]
unsafeDrop 1 (_:Xs) = XS
unsafeDrop m (_:xs) = unsafeDrop (m - 1) Xxs

#endif

"length’

-- | Append two lists, i.e.,

-- > [x1l, ..., xm] ++ [yl, ..., yn] == [x1, ..., Xm, yl, ..., yn]
-- > [x1, ..., xm] ++ [yl, ...] == [x1, ..., xm, y1, ...]

-— If the first list is not finite, the result is the first list.

—= WARNING: This function takes linear time in the number of elements of the
-- first list.

(++) :: [a] =-> [a] =-> [a]

{-# NOINLINE [2] (++) #-}
-— Give time for the RULEs for (++) to fire in InitialPhase
-- It's recursive, so won't inline anyway,
-— but saying so is more explicit

(++) [] ys = ys

(++) (X:xXs) ys = X ¢ Xs ++ ys

Question |

* Add the following line at the top of your file to avoid name clashes:
import Prelude hiding (concat, and, (!'), replicate, elem)

* Then define those library functions using recursion:

and :: [Bool] — Bool
concat .. [[al] — [al

replicate :: Int - a — [a]
(1) . [a] = Int — a

elem :: Eg a = a — [a] — Bool

Question |

and :: [Bool] — Bool

and [] = True (1) :: [a] = Int — a
and (x:xs) = x &5 and Xxs (1) [1] _ = error "index too large"
(1) (x:xs) 0 = x
concat :: [[al]l — [a] (1) (x:xs) n=(1""1) xs (n - 1)
concat [] = [
concat (x:xs) = x ++ concat Xxs elem :: Eq a = a — [a] — Bool
elem a [] = False
replicate ITnt - a — [a] elem a (x:xs) = if a = x then True else elem a xs

replicate 0 x = []
replicate n x = x : (replicate (n - 1) x)

Question 2

* |Implement a recursive function doubleList which doubles all the elements and
returns the list.

* |Implement the function using map and lambda functions.

double :: Int — Int
double x = x + X

doubleListRec :: [Int] — [Int]
doublelListRec [] = []
doubleListRec (x:xs) = double x : doubleListRec xs

doublelList

map double

doubleList' = map (\x — x + X)

Question 3

* |Implement a recursive function zipSum, which takes two lists and returns the list
of corresponding sumes.

* |mplement the function using the library function zipWith and lambda functions.

zipSum :: [Int] — [Int] — [Int]

zipSum [] _ = []

zipSum _ [] = []

zipSum (x:xs) (y:ys) = (x + y) : zipSum XS Vs

zipSum' = zipWith (+)

Merge Sort

Divide the unsorted list into n sublists,
each containing one element (a list of
one element is considered sorted).

Repeatedly merge sublists to produce
new sorted sublists until there is only
one sublist remaining. This will be the

sorted list.

Credit: https://lwww.programiz.com/dsa/merge-sort

Step |: merge function

* Define a recursive function merge that merges two sorted lists of integers to give
a single sorted list.

merge :: [Int] — [Int] — [Int]
merge xXs ys = undefined

-- >>> merge [5] [12]

-—- [5,12]

-- >>> merge [6] [5, 12]

-—- [5,6,12]

-- >>> merge [5, 6, 12] [1, 9, 10]
- [1,5,6,9,10,12]

Step 2: msort function

* Define a recursive function msort that implements merge sort.
* Hint:
e Lists whose length <= | are already sorted;

* The other lists can be sorted by recursively sorting the two halves and merging
the results;

* Thereis a library function splitAt :: Int — [a] — ([al, [a]).

Merge Sort In Haskell

merge :: [Int] — [Int] — [Int]

merge [] 1 = 1

merge 1 [] = 1

merge (x:xs) (y:ys) = if x <y then x : merge xs (y:ys) else y : merge (X:Xs) ys

msort :: [Int] — [Int]
msort [] = []
msort [x] = [x]
msort xs = merge (msort 1) (msort r)
where
(1, r) = splitAt p xs
p = length xs ‘div 2

($) Operator

* |t’s called function application operator.
* Why it matters!
e fx (normal function application) has high precedence

* ($) has the lowest precedence

($) == (a > b) - a —=> b
f $x=°F x

exprl = sqrt (3 + 4 + 9)
expr2 = sqrt $ 3 + 4 + 9

(.) Operator

--

e function composition operator (.) :z (b = ¢) = (a = b) - a = ¢

Practice

e Remove parens from the following expression using operators we just learnt.

foo = reverse (take 6 [1..10])

