
COMP3258
Functional Programming

Tutorial Session 2: Types, Curried Functions and QuickCheck

Overview

• Types

• Curried Functions

• QuickCheck (Optional)

Types

• A type is a name for a collection of related values.

• In GHCi, use :t or :type to infer the type of a given expression.

Types
ghci> :t not False
not False ::: Bool

ghci> :t ['a', 'b', 'c']
['a', 'b', 'c'] ::: [Char]

ghci> :t [init, tail, reverse]
[init, tail, reverse] ::: [[a] ->- [a]]

ghci> :t (False, True)
(False, True) ::: (Bool, Bool)

ghci> :t not
not ::: Bool ->- Bool

Type Inference

• Haskell supports definitions with or without a type declaration;

• When a definition does not have a type declaration

• Haskell would automatically infers a type for the definition

• and emit an error when it’s not able to do so.

Parametric Polymorphism

• Certain definitions may work for different types of parameters or return value.

• consider identity x = x

identity ::: a ->- a

• The identity function takes an arbitrary argument and returns that argument itself.

• a is a type variable (or type parameter)

• in which an arbitrary type can fit.

Function Application: Type instantiation (Implicit)

• Function application (function call) in Haskell will implicitly instantiate a
polymorphic type.

TypeApplications: Type instantiation (Explicit)

• The TypeApplications is a extension allows you to use visible type application in
expressions.

Language Extensions
Multi-line Commands

Polymorphic Type
Type Applications/Instantiation

Curried Functions

• Functions with multiple arguments are also possible by returning functions as
result.

• In Haskell, multi-argument functions are default curried.

• Try: listConcat xs ys = xs ++ ys

Curried vs. Uncurried

addCurried ::: Int ->- Int ->- Int
addCurried x y = x + y

add1Curried ::: Int ->- Int
add1Curried = addCurried 1

addUncurried ::: (Int, Int) ->- Int
addUncurried (x, y) = x + y

add1Uncurried ::: Int ->- Int
add1Uncurried x = addUncurried (x, 1)

Question I

• In Haskell Prelude library, there are two functions curry that converts an un-
curried function to a curried one, and uncurry vice versa with signatures:

curry ::: ((a, b) ->- c) ->- (a ->- b ->- c)
uncurry ::: (a ->- b ->- c) ->- ((a, b) ->- c)

curry ::: ((a, b) ->- c) ->- a ->- b ->- c
curry f a b = f (a, b)

uncurry ::: (a ->- b ->- c) ->- (a, b) ->- c
uncurry f (a, b) = f a b

Conditionals, Guards and Patterns
signum ::: Int ->- Int
signum n = if n < 0 then -1 else
 if n === 0 then 0 else 1

signum ::: Int ->- Int
signum n | n < 0 = -1
 | n === 0 = 0
 | otherwise = 1

not ::: Bool → Bool
not False = True
not True = False

Question 2
• Pattern matching can not only be used with lists but also on various different types. Define two

functions using pattern matching:

• first that takes a pair as an argument, and returns the first element of the pair. (Hint: use
pattern matching on pairs)

• isZero that takes an integer as an argument and checks whether the integer is 0 or not. (Hint:
use pattern matching on integers)

first ::: (a, b) ->- a
first (a, _) = a

isZero ::: Int ->- Bool
isZero 0 = True
isZero _ = False

Question 3

• Define a function safetail that behaves in the same way as tail, except that safetail
maps the empty list to the empty list, whereas tail gives an error in this case.

• Define safetail using:

• conditional expression

• guarded equation

• pattern matching

--- if ... then ... else
safeTail ::: [a] ->- [a]
safeTail xs = if null xs then [] else tail xs

--- guard
safeTail ::: [a] ->- [a]
safeTail xs
 | null xs = []
 | otherwise = tail xs

--- pattern matching (recommended in practice)
safeTail ::: [a] ->- [a]
safeTail [] = []
safeTail (x : xs) = xs

QuickCheck: Property Testing*

• It’s a property testing package of Haskell.

• Properties are described as functions.

• Functions are automatically tested on random inputs.

Further reading: “QuickCheck: a lightweight tool for random testing of Haskell programs”

Install & Import QuickCheck

Specify Properties (Laws)
prop_RevUnit ::: Int ->- Bool
prop_RevUnit x =
 reverse [x] === [x]

prop_RevApp ::: [Int] ->- [Int] ->- Bool
prop_RevApp xs ys =
 reverse (xs +++ ys) === reverse ys +++ reverse xs

prop_RevRev ::: [Int] ->- Bool
prop_RevRev xs =
 reverse (reverse xs) === xs

Specify Properties (Laws)

• The programmer must specify a fixed type at which the law is to be tested.

• a fixed type simply means non-polymorphic

• we can use parametricity to argue that a property holds polymorphically.

Conditional Properties (Implication)
prop_MaxLe ::: Int ->- Int ->- Property
prop_MaxLe x y =
 x <<= y ==>= max x y === y

ordered ::: [Int] ->- Bool
ordered [] = True
ordered (x:xs) = all (>>= x) xs &&& ordered xs

insert ::: Int ->- [Int] ->- [Int]
insert x [] = [x]
insert x (y:ys) = if x <<= y then x : y : ys else y : insert x ys

prop_Insert ::: Int ->- [Int] ->- Property
prop_Insert x xs =
 ordered xs ==>= ordered (insert x xs)

Conditional Properties (Implication)

• Use implication (==>) to express conditional properties;

• The type of property “Bool” are replaced by “Property”.

Monitor Random Tests

• use classify to separate out trivial cases;

• use collect to list test cases according to certain measures.

Monitor Random Tests
prop_InsertClassify ::: Int ->- [Int] ->- Property
prop_InsertClassify x xs =
 ordered xs ==>=
 classify (null xs) "trivial cases" $
 ordered (insert x xs)

prop_InsertCollect ::: Int ->- [Int] ->- Property
prop_InsertCollect x xs =
 ordered xs ==>=
 collect (length xs) $
 ordered (insert x xs)

Monitor Random Tests

Custom Test Data Generator

prop_InsertOrdered ::: Int ->- Property
prop_InsertOrdered x =
 forAll orderedList $ \xs ->-
 ordered (insert x xs)

QuickCheck Primitives

import Test.QuickCheck
 (orderedList,
 (==>=),
 classify,
 collect,
 forAll,
 quickCheck,
 Property)

Reminder

• The first assignment will be released next week (Perhaps Monday)

• Next tutorial will cover recursive functions and sorting algorithms.

