
COMP3258
Functional Programming

Tutorial Session 2: Types, Curried Functions and QuickCheck

Overview

• Types

• Curried Functions

• QuickCheck (Optional)

Types

• A type is a name for a collection of related values.

• In GHCi, use :t or :type to infer the type of a given expression.

Types
ghci> :t not False

not False :: Bool

ghci> :t ['a', 'b', 'c']

['a', 'b', 'c'] :: [Char]

ghci> :t [init, tail, reverse]

[init, tail, reverse] :: [[a] -> [a]]

ghci> :t (False, True)

(False, True) :: (Bool, Bool)

ghci> :t not

not :: Bool -> Bool

Type Inference

• Haskell supports definitions with or without a type declaration;

• When a definition does not have a type declaration

• Haskell would automatically infers a type for the definition

• and emit an error when it’s not able to do so.

Parametric Polymorphism

• Certain definitions may work for different types of parameters or return value.

• consider identity x = x

identity :: a -> a

• The identity function takes an arbitrary argument and returns that argument itself.

• a is a type variable (or type parameter)

• in which an arbitrary type can fit.

Function Application: Type instantiation (Implicit)

• Function application (function call) in Haskell will implicitly instantiate a
polymorphic type.

TypeApplications: Type instantiation (Explicit)

• The TypeApplications is a extension allows you to use visible type application in
expressions.

Language Extensions
Multi-line Commands

Polymorphic Type
Type Applications/Instantiation

Curried Functions

• Functions with multiple arguments are also possible by returning functions as
result.

• In Haskell, multi-argument functions are default curried.

• Try: listConcat xs ys = xs ++ ys

Curried vs. Uncurried

addCurried :: Int -> Int -> Int

addCurried x y = x + y

add1Curried :: Int -> Int

add1Curried = addCurried 1

addUncurried :: (Int, Int) -> Int

addUncurried (x, y) = x + y

add1Uncurried :: Int -> Int

add1Uncurried x = addUncurried (x, 1)

Question I

• In Haskell Prelude library, there are two functions curry that converts an un-
curried function to a curried one, and uncurry vice versa with signatures:

curry :: ((a, b) -> c) -> (a -> b -> c)

uncurry :: (a -> b -> c) -> ((a, b) -> c)

curry :: ((a, b) -> c) -> a -> b -> c

curry f a b = f (a, b)

uncurry :: (a -> b -> c) -> (a, b) -> c

uncurry f (a, b) = f a b

Conditionals, Guards and Patterns
signum :: Int -> Int

signum n = if n < 0 then -1 else

 if n == 0 then 0 else 1

signum :: Int -> Int

signum n | n < 0 = -1

 | n == 0 = 0

 | otherwise = 1

not :: Bool → Bool

not False = True

not True = False

Question 2
• Pattern matching can not only be used with lists but also on various different types. Define two

functions using pattern matching:

• first that takes a pair as an argument, and returns the first element of the pair. (Hint: use
pattern matching on pairs)

• isZero that takes an integer as an argument and checks whether the integer is 0 or not. (Hint:
use pattern matching on integers)

first :: (a, b) -> a

first (a, _) = a

isZero :: Int -> Bool

isZero 0 = True

isZero _ = False

Question 3

• Define a function safetail that behaves in the same way as tail, except that safetail
maps the empty list to the empty list, whereas tail gives an error in this case.

• Define safetail using:

• conditional expression

• guarded equation

• pattern matching

-- if .. then .. else

safeTail :: [a] -> [a]

safeTail xs = if null xs then [] else tail xs

-- guard

safeTail :: [a] -> [a]

safeTail xs

 | null xs = []

 | otherwise = tail xs

-- pattern matching (recommended in practice)

safeTail :: [a] -> [a]

safeTail [] = []

safeTail (x : xs) = xs

QuickCheck: Property Testing*

• It’s a property testing package of Haskell.

• Properties are described as functions.

• Functions are automatically tested on random inputs.

Further reading: “QuickCheck: a lightweight tool for random testing of Haskell programs”

Install & Import QuickCheck

Specify Properties (Laws)
prop_RevUnit :: Int -> Bool

prop_RevUnit x =

 reverse [x] == [x]

prop_RevApp :: [Int] -> [Int] -> Bool

prop_RevApp xs ys =

 reverse (xs ++ ys) == reverse ys ++ reverse xs

prop_RevRev :: [Int] -> Bool

prop_RevRev xs =

 reverse (reverse xs) == xs

Specify Properties (Laws)

• The programmer must specify a fixed type at which the law is to be tested.

• a fixed type simply means non-polymorphic

• we can use parametricity to argue that a property holds polymorphically.

Conditional Properties (Implication)
prop_MaxLe :: Int -> Int -> Property

prop_MaxLe x y =

 x <= y ==> max x y == y

ordered :: [Int] -> Bool

ordered [] = True

ordered (x:xs) = all (>= x) xs && ordered xs

insert :: Int -> [Int] -> [Int]

insert x [] = [x]

insert x (y:ys) = if x <= y then x : y : ys else y : insert x ys

prop_Insert :: Int -> [Int] -> Property

prop_Insert x xs =

 ordered xs ==> ordered (insert x xs)

Conditional Properties (Implication)

• Use implication (==>) to express conditional properties;

• The type of property “Bool” are replaced by “Property”.

Monitor Random Tests

• use classify to separate out trivial cases;

• use collect to list test cases according to certain measures.

Monitor Random Tests
prop_InsertClassify :: Int -> [Int] -> Property

prop_InsertClassify x xs =

 ordered xs ==>

 classify (null xs) "trivial cases" $

 ordered (insert x xs)

prop_InsertCollect :: Int -> [Int] -> Property

prop_InsertCollect x xs =

 ordered xs ==>

 collect (length xs) $

 ordered (insert x xs)

Monitor Random Tests

Custom Test Data Generator

prop_InsertOrdered :: Int -> Property

prop_InsertOrdered x =

 forAll orderedList $ \xs ->

 ordered (insert x xs)

QuickCheck Primitives

import Test.QuickCheck

 (orderedList,

 (==>),

 classify,

 collect,

 forAll,

 quickCheck,

 Property)

Reminder

• The first assignment will be released next week (Perhaps Monday)

• Next tutorial will cover recursive functions and sorting algorithms.

