COMP32586
-unctional Programming

Tutorial Session 2: Types, Curried Functions and QuickCheck



Overview

* Jypes
e Curried Functions

* QuickCheck (Optional)



lypes

* A type is a name for a collection of related values.

* |In GHCi, use :t or :type to infer the type of a given expression.



ghcl>

ghcl>

ghcl>

ghcl>

ghcl>

lypes

not False

['a', 'b', 'c']
[init, tail, reverse]
(False, True)

not



lype Inference

* Haskell supports definitions with or without a type declaration;
* When a definition does not have a type declaration
* Haskell would automatically infers a type for the definition

e and emit an error when it’s not able to do so.



Parametric Polymorphism

e Certain definitions may work for different types of parameters or return value.

e consider identity X = X



1dentity :: a — a

* The identity function takes an arbitrary argument and returns that argument itself.
* ais a type variable (or type parameter)

* in which an arbitrary type can fit.



~unction Application: Iype instantiation (Implicit)

* Function application (function call) in Haskell will implicitly instantiate a
polymorphic type.

@S @ i ghci
Last login: Thu Sep 21 13:10:14 on ttys000
A ~/ ghctil
GHCi, version 9.6.2: https://www.haskell.org/ghc/ :? for help
. ghci> :{
ghci| identity :: a -> a
ghci| identity x = X
tghci| :}
ghci> :t ildentity True

identity True :: Bool

ghcil> :t identity 42

identity 42 :: Num a => a

i ghcil> :t identity (+)

identity (+) :: Numa => a -> a -> a
ghci> :t identity [1,2,3]

identity [1,2,3] :: Num a => [a]
ghci> |}




TypeApplications: lype Iinstantiation (Explicit)

* The IypeApplications is a extension allows you to use visible type application in

eXPreSSIOnS° . @ 1 ghci
Last login: Wed Sep 20 20:00:13 on ttys004
A ~/ ghctil
GHCi, version 9.6.2: https://wu =~ =~ °° """ T Tor help
nCc1> :set -XTypeApplications
ci> :§
ncl| ildentity :: a -> a
ncl| ldentity X = X
nci| :}
nci> :t identity
ldentity :: a -> a
ghci> :t identity @In
identity @Int :: Int -> Int
ghci> :t ildentity @Char
identity @Char :: Char -> Char
ghci> :t identity @(Char -> Char)
identity @(Char -> Char) :: (Char -> Char) -> Char -> Char
ghcil> :set -XImpredicativeTypes
ghci> :t identity @(forall b. (b -> b))
identity @(forall b. (b -> b))
:: (forall b. b => b) => foralL b. b -> b
ghci> |}

gQ 0u 0u 0T 0Q 07




Curried Functions

Functions with multiple arguments are also possible by returning functions as
result.

In Haskell, multi-argument functions are default curried.

* Try:listConcat xs ys = xs ++ ys



Curried vs. Uncurried

addCurried :: Int — Int — Int addUncurried :: (Int, Int) — Int
addCurried x vy = X + vy addUncurried (x, y) = X + vy

add1Curried :: Int — Int addlUncurried :: Int — Int
add1lCurried = addCurried 1 addlUncurried x = addUncurried (x, 1)




Question |

* |n Haskell Prelude library, there are two functions curry that converts an un-
curried function to a curried one, and uncurry vice versa with signatures:

curry :: ((a, b) > ¢c) > (a > b — c)
uncurry :: (a - b — ¢) — ((a, b) = c)
curry :: ((a, b) > c) > a > b = c

curry f a b =f (a, b)

uncurry :x (a > b - ¢) = (a, b) = c
uncurry f (a, b) = f a b




Conditionals, Guards and Patterns

signum :: Int — Int
signum n = 1f n < @ then -1 else
1f n = 0 then 0 else 1
not :: Bool » Bool
not False = True
signum :: Int — Int not True = False
signum n n < 0 = -1
n — 0 = 0
otherwise = 1




Question 2

e Pattern matching can not only be used with lists but also on various different types. Define two
functions using pattern matching:

o first that takes a pair as an argument, and returns the first element of the pair. (Hint: use
pattern matching on pairs)

e isZero that takes an integer as an argument and checks whether the integer is 0 or not. (Hint:
use pattern matching on integers)

first :x (a, b) — a
first (a, ) = a

1sZero :: Int — Bool
1sZero 0 True
1sZero False



Question 3

Define a function safetail that behaves in the same way as tail, except that safetail
maps the empty list to the empty list, whereas tail gives an error in this case.

—- 1f .. then .. else
Define safetail using: safeTail :: [a] — [al
safeTail xs = 1if null xs then [] else tail xs
e conditional expression — guard
safeTail :: [a] — [a]
 guarded equation SaTeTai“ o]
Nnu

| otherw1se = tail xs
e pattern matching
—-- pattern matching (recommended in practice)
safeTail :: [a] — [al
safeTail [] = []
safeTail (x : xs) = XS




QuickCheck: Property lesting™

* |t's a property testing package of Haskell.
* Properties are described as functions.

* Functions are automatically tested on random inputs.

Further reading: “QuickCheck: a lightweight tool for random testing of Haskell programs”™



Install & Import QuickCheck

® © @ EXPLORER QCDemo.cabal X M Main.hs [
N7 (aetel o) author: Xu Xue

v app maintainer: juniorxxue@gmail.com

M Main.hs

> dist-newstyle
® CHANGELOG.md

-- A copyright notice.

-- copyright:
QCDemo.cabal
-- category:
extra-source-files: CHANGELOG.md
executable QCDemo
mailn-is: Main.hs
-- Modules included in this executable, other than Main.
-- other-modules:
-- LANGUAGE extensions used by modules in this package.
-- other-extenptoms: '_
build-depends: base ~>4.18.0.0, QuickCheck
hs-source-dirs".
default-language: Haskell2010
35
> OUTLINE
> TIMELINE
D L P s
Pmin O ®OA0G I Ln 35,Col | Spaces:4 UTF-8 LF Cabal & 4§ldSpell & [

. v




Specity Properties (Laws)

prop_RevUnit :: Int — Bool
prop_RevUnit X =
reverse [x] = [x]

prop_RevApp :: [Int] — [Int] — Bool
prop_RevApp! Xs ys =
reverse (Xs ++ ys) = reverse ys ++ reverse Xs

prop_RevRev :: [Int] — Bool
prop_RevRev| Xs |=
reverse (reverse Xs) = XS



Specity Properties (Laws)

* The programmer must specify a fixed type at which the law is to be tested.
e a fixed type simply means non-polymorphic

® we can use parametricity to argue that a property holds polymorphically.



Condrtional Properties (Implication)

orop_MaxLe :: Int — Int — Property
orop_MaxLe x y =

X < Yy = max Xy =y
ordered :: [Int] — Bool

ordered [] = True
ordered (x:xs) = all (= x) xs §5 ordered xs

insert :: Int — [Int] — [Int]
insert x [] = [x]
insert x (y:ys) = if x < y then x : y : ys else y : insert x ys

orop_Insert :: Int — [Int] — Property
orop_Insert X Xs =

ordered xs = ordered (insert x Xxs)




Condrtional Properties (Implication)

 Use implication (==>) to express conditional properties;

* The type of property “Bool” are replaced by “Property”.



Monrtor Random lests

* use classify to separate out trivial cases;

* use collect to list test cases according to certain measures.



Monrtor Random lests

prop_InsertClassify :: Int — [Int] — Property

prop_InsertClassify X xs =

ordered xs —
classify (null xs) "trivial cases" $

ordered (insert x Xxs)

prop_InsertCollect :: Int — [Int] — Property
prop_InsertCollect x xs
ordered xs —

collect (length xs) $
ordered (insert x Xxs)




Monrtor Random lests

QCDemo.cabal » Main.hs X
main :: IO ()
main = do

-- quicRkCheck prop_RevUnit

-- quicRCheck prop_RevApp

—-- quickCheck prop_RevRev

-- quickRCheck prop_MaxLe

—- quickCheck prop_Insert
quickCheck prop_InsertClassify

72 ¥ quickCheck prop_InsertCollect

—-- quickCheck prop_InsertOrdered

PROBLEMS | OUTPUT DEBUG CONSOLE TERMINAL

® A ~/Library/CloudStorage/Dropbox/cs/2023comp3258/tutorials/02/QCDemo/ cabal run
Up to date
**x% Gave up! Passed only 72 tests; 1000 discarded tests (26% trivial cases).
*k%x Gave up! Passed only 65 tests; 1000 discarded tests:
38% 0
34% 1
12% 2
1% 3
5% 4
A ~/Library/CloudStorage/Dropbox/cs/2023comp3258/tutorials/02/QCDemo/ []



Custom lest Data Generator

prop_InsertOrdered :: Int — Property
prop_InsertOrdered x =
forAll orderedList $ \xs —
ordered (insert Xx Xs)



QuickCheck Primrtives

import Test.QuickCheck

( orderedList,
(=),
classify,
collect,
forAll,
qulickCheck,
Property )



Reminder

* The first assignment will be released next week (Perhaps Monday)

* Next tutorial will cover recursive functions and sorting algorithms.



