
COMP3258
Functional Programming

Tutorial Session 1: Introduction to Haskell Development

About Me

• I am a tutor of FP 2023.

• I was a tutor of FP 2022.

• My responsibility is to help your understand FP (Haskell) better.

• My job will cover design and grade of assignments, but blind to exams.

• I am a Haskell enthusiast, and happy to answer any related questions.

• I am a PhD student of Bruno and do research about FP.

How to reach (1)

• Course Instructor (Bruno C. d. S. Oliveira) bruno@cs.hku.hk

• Tutor (Xu Xue) xxue@cs.hku.hk

Blue font is last name.

mailto:bruno@cs.hku.hk
mailto:xuxue@connect.hku.hk

How to reach (II)

• Please send your inquiries to the instructor's or tutor's email box with the
subject beginning with COMP3258.

• You are encouraged to post questions on the discussion forum.

• If you want to meet outside office hours, please send us an email to arrange a
meeting.

• Emails are guaranteed to reply within 3 working days.

About Tutorial

• It’s optional but encouraged to attend.

• The structure of the session is

• Review (20 mins)

• Code Practice (30 mins)

Haskell (haskell.org)

• GHC, GHCi and GHCup

• Hoogle

• Cabal, Stack

http://haskell.org

> ghcup tui

hoogle.haskell.org

Cabal
Some useful commands:
1. cabal init
2. cabal install
3. cabal run

Editor

• VSCode (Haskell Plugin)

• Follow the instructions to install the HLS

• Emacs/Vim/Sublime… (with LSP)

• Not recommended

Editor Feat. 1: Type Check

Editor Feat. 2: Type Inference

However, In this course, you are encouraged to write the type first.

Editor Feat. 3: Code Format

Learn from the hint.

Editor Feat.4: Quick Evaluation

Editor Feat.5: Docs + Type Instantiation

Dive into Haskell

• by REPL

• by Script

GHCi (The REPL)

ghci> 2 + 3 * 4
14
ghci> (2 + 3) * 4
20
ghci> sqrt (3^2 + 4^2)
5.0
ghci> 1 === 2
False

Some Useful Functions
ghci> :t head
head ::: GHC.Stack.Types.HasCallStack =>= [a] ->- a
ghci> head [1,2,3,4]
1

ghci> :t tail
tail ::: GHC.Stack.Types.HasCallStack =>= [a] ->- [a]
ghci> tail [1,2,3,4]
[2,3,4]

ghci> :t (!!!)
(!!!) ::: GHC.Stack.Types.HasCallStack =>= [a] ->- Int ->- a
ghci> [1,2,3,4] !!! 2
3

ghci> :t take
take ::: Int ->- [a] ->- [a]
ghci> take 3 [1,2,3,4]
[1,2,3]

ghci> :t drop
drop ::: Int ->- [a] ->- [a]
ghci> drop 3 [1,2,3,4]
[4]

ghci> :t reverse
reverse ::: [a] ->- [a]
ghci> reverse [1,2,3,4]
[4,3,2,1]

ghci> :t length
length ::: Foldable t =>= t a ->- Int
ghci> length [1,2,3,4]
4

ghci> :t (+++)
(+++) ::: [a] ->- [a] ->- [a]
ghci> [1, 2, 3] +++ [4, 5]
[1,2,3,4,5]

which is called “indexing”

which is called “concatenation”

GHCi: Script

1. Create Test.hs

2. First line write down: module Test where

3. Then write your definitions

4. Use GHCi to load (:l Test.hs) and reload (:r)

Prelude

imported by Prelude!

Prelude

• Prelude is a module that contains a small set of standard definitions.

• It’s imported by default implicitly.

• What Prelude does is only to re-import definitions in other modules.

• Check its source code at
https://hackage.haskell.org/package/base-4.18.0.0/docs/src/Prelude.html

https://hackage.haskell.org/package/base-4.18.0.0/docs/src/Prelude.html

Questions

Q1

• Is the following Haskell program valid?

N = a `div` length xs where
 a = 10
 xs = [1,2,3,4,5]

• Surprisingly the program is invalid. The name of a usual function (or value)
definition shouldn't start with a capital letter. If you feed the program to GHCi, it
would emit an error message:

Test.hs:16:1: error: [GHC-76037] Not in scope: data constructor ‘N’
 |
16 | N = a `div` length xs where
 | ^
Failed, no modules loaded.

Q2
• Define your own last function using the functions introduced above (head, tail, take, drop,

reverse, length)?

• Hint: last returns the last element of a list.

• Are there other approaches?

--- If we are restricted to use library function only
last ::: [a] ->- a
last xs = head (drop (length xs - 1) xs)

--- While if we implement it by ourself, we could do it by pattern matching
last ::: [a] ->- a
last [] = error "calling last on empty list"
last (x : []) = x
last (x : y : xs) = last (y : xs)

Q3
• Define init in two different ways.

• Hint: init removes the last element of a list.

--- using library functions
init ::: [a] ->- [a]
init xs = take (length xs - 1) xs

--- pattern matching and recursion
init ::: [a] ->- [a]
init [] = error "calling init on empty list"
init (x : []) = []
init (x : y : xs) = x : init (y : xs)

Further Reading

• Programming in Haskell (Graham Hutton)

• Learn You a Haskell for Great Good! (Miran Lipovača)

• Haskell Programming from First Principles (Christopher Allen, Julie Moronuki)

Q & A

