INTRODUCTION 00 Applications of Merge Operator 00000000 Challenges 0000 Key Ideas 00000000000000

Applicative Intersection Types

December 5, 2022

Xu Xue¹Bruno C. d. S. OliveiraNingning Xie²¹University of Hong Kong²University of Cambridge

Intersection Types

• A term *e* having the type *A* & *B* means *e* has both *A* and *B*.

¹Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. "Functional characters of solvable terms". In: *Mathematical Logic Quarterly* 27.2-6 (1981), pp. 45–58.

Intersection Types

- A term *e* having the type *A* & *B* means *e* has both *A* and *B*.
- Originally introduced by Coppo et al.¹, it allows $\lambda x. x x$ to be typed $((A \rightarrow B) \& A) \rightarrow B$.

¹Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. "Functional characters of solvable terms". In: *Mathematical Logic Quarterly* 27.2-6 (1981), pp. 45–58.

Intersection Types

- A term *e* having the type *A* & *B* means *e* has both *A* and *B*.
- Originally introduced by Coppo et al.¹, it allows $\lambda x. x x$ to be typed $((A \rightarrow B) \& A) \rightarrow B$.
- In languages like TypeScript, the intersection types are explicitly inhabitated.

```
interface Name { name: string; }
interface ID { id: number; }
type Person = Name & ID
let e : Person = { id: 42, name: 'Alice'};
```

¹Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. "Functional characters of solvable terms". In: *Mathematical Logic Quarterly* 27.2-6 (1981), pp. 45–58.

Merge Operator³

• e_1 , e_2 means it can be used as e_1 or e_2 .

²We use bidirectional typing, $\Gamma \vdash e \Leftrightarrow A$, and $\Leftrightarrow ::= \Leftarrow \mid \Rightarrow$

³Jana Dunfield. "Elaborating intersection and union types". In: *Journal of Functional Programming* 24.2-3 (2014), pp. 133–165.

Merge Operator³

- e_1 , e_2 means it can be used as e_1 or e_2 .
- Force intersection types to be *explicitly* introduced and inhabitated.
- Typing for merge is ²

 $\frac{\Gamma \vdash MRG}{\Gamma \vdash e_1 \Rightarrow A} \qquad \frac{\Gamma \vdash e_2 \Rightarrow B}{\Gamma \vdash e_1 , , e_2 \Rightarrow A \& B}$

²We use bidirectional typing, $\Gamma \vdash e \Leftrightarrow A$, and $\Leftrightarrow ::= \Leftarrow \mid \Rightarrow$

³Jana Dunfield. "Elaborating intersection and union types". In: *Journal of Functional Programming* 24.2-3 (2014), pp. 133–165.

Merge Operator³

- e_1 , e_2 means it can be used as e_1 or e_2 .
- Force intersection types to be *explicitly* introduced and inhabitated.
- Typing for merge is ²

 $\frac{\Gamma \vdash MRG}{\Gamma \vdash e_1 \Rightarrow A} \qquad \frac{\Gamma \vdash e_2 \Rightarrow B}{\Gamma \vdash e_1 , , e_2 \Rightarrow A \& B}$

• Merge operator adds expressive power and enables many applications.

²We use bidirectional typing, $\Gamma \vdash e \Leftrightarrow A$, and $\Leftrightarrow ::= \Leftarrow \models$

³Jana Dunfield. "Elaborating intersection and union types". In: *Journal of Functional Programming* 24.2-3 (2014), pp. 133–165.

4

Extensible Records⁴

- Records can be represented by *syntactic sugar of merge operator*.
- $\{x = e_1, y = e_2, z = e_3\}$ can be viewed as $\{x = e_1\}, \{y = e_2\}, \{z = e_3\}$.

⁴Luca Cardelli and John C Mitchell. "Operations on records". In: Mathematical structures in computer science 1.1 (1991), pp. 3–48.

4

Extensible Records⁴

- Records can be represented by *syntactic sugar of merge operator*.
- $\{x = e_1, y = e_2, z = e_3\}$ can be viewed as $\{x = e_1\}, \{y = e_2\}, \{z = e_3\}$.
- Record width subtyping for free.

$$\{l_i:T_i\}^{i=1..n..n+k} <: \{l_i:T_i\}^{1..n}$$

is subsumed by

 $\{l_1:A\}\,\&\,\{l_2:B\}<:\{l_1:A\}$

is subsumed by

A & B <: A

⁴Luca Cardelli and John C Mitchell. "Operations on records". In: *Mathematical structures in computer science* 1.1 (1991), pp. 3–48.

Record Projection

• Record Projection is standard.

$$(\{x=e_1\}, \{y=e_2\}).x \hookrightarrow e_1$$

$$(\{x=e_1\},,\{y=e_2\}).y \hookrightarrow e_2$$

• Record Concatenation is simply merging.

$$(\{x = e_1\}, \{y = e_2\}), \{z = e_3\}$$

Overloaded Functions⁵

• Function implementation *varies* depending on the types of arguments.

⁵Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. "A calculus for overloaded functions with subtyping". In: *Information and Computation* 117.1 (1995), pp. 115–135.

Overloaded Functions⁵

- Function implementation varies depending on the types of arguments.
- Consider Haskell's show function.

```
show :: Show a => a -> String
instance Show Int where
show = showInt
instance Show Bool where
show = showBool
-- instance will be selected according to the argument type
show 1 → showInt 1 → "1"
show true → showBool true → "true"
```

• show can be defined as showInt,,showBool

⁵Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. "A calculus for overloaded functions with subtyping". In: *Information and Computation* 117.1 (1995), pp. 115–135.

Overloaded Application

• Overloaded Application is standard.

```
show : (Int -> String) & (Bool -> String)
show = showInt,,showBool
show 1 \hookrightarrow showInt 1 \hookrightarrow "1"
show true \hookrightarrow showBool true \hookrightarrow "true"
```

Adding overloading instances is simply by merging.
 newShow = show,, showDouble

8

Return type Overloading⁶

• Function implementation varies depending on the surrounding contexts.

⁶Koar Marntirosian et al. "Resolution as Intersection Subtyping via Modus Ponens". In: *Proc. ACM Program. Lang.* 4.OOPSLA (2020).

8

Return type Overloading⁶

- Function implementation varies depending on the surrounding contexts.
- Consider Haskell's read function

```
read :: Read a => String -> a
instance Read Int where
read = readInt
instance Read Bool where
read = readBool
-- instance will be selected according to surrounding contexts
succ (read "1") ↔ 2
not (read "true") ↔ false
```

⁶Koar Marntirosian et al. "Resolution as Intersection Subtyping via Modus Ponens". In: *Proc. ACM Program. Lang.* 4.OOPSLA (2020).

8

Return type Overloading⁶

- Function implementation varies depending on the surrounding contexts.
- Consider Haskell's read function

```
read :: Read a => String -> a
instance Read Int where
  read = readInt
instance Read Bool where
  read = readBool
-- instance will be selected according to surrounding contexts
```

```
succ (read "1") \hookrightarrow 2
```

```
not (read "true") \hookrightarrow false
```

• Calculi with merge operator can do in a similar way.

```
read : (String -> Int) & (String -> Bool)
```

```
read = readInt,,readBool
```

⁶Koar Marntirosian et al. "Resolution as Intersection Subtyping via Modus Ponens". In: *Proc. ACM Program. Lang.* 4.OOPSLA (2020).

Nested Composition⁷

• It reflects *distributivity* of intersection types at the term level.

 $\{l:A\}\,\&\,\{l:B\}<:\{l:A\,\&\,B\}\ \text{S-Distri-RCD}$

 $(A \rightarrow B) \And (A \rightarrow C) <: A \rightarrow (B \And C)$ S-Distri-Arr

• Results extracted from <u>nested</u> terms will be <u>composed</u> when eliminating terms created by the merge operator.

⁷Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers. "The essence of nested composition". In: 32nd European Conference on Object-Oriented Programming (ECOOP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2018.

Nested Composition via Projection and Application

• For records

$$(\{x = e_1\}, \{x = e_2\}).x \hookrightarrow e_1, e_2$$

Nested Composition via Projection and Application

• For records

$$(\{x = e_1\}, \{x = e_2\}).x \hookrightarrow e_1, e_2$$

- For overloaded functions
- $\begin{aligned} f: Int &\to Int \to Int \\ g: Int &\to Bool \to Bool \\ (f, ,g) \: 1 &\hookrightarrow (f \: 1), , (g \: 1) \end{aligned}$

Nested Composition via Projection and Application

• For records

$$(\{x = e_1\}, \{x = e_2\}).x \hookrightarrow e_1, e_2$$

• For overloaded functions

 $\begin{array}{l} f: Int \rightarrow Int \rightarrow Int \\ g: Int \rightarrow Bool \rightarrow Bool \\ (f, ,g) \ 1 \hookrightarrow (f \ 1), , (g \ 1) \end{array}$

• Both cases are "unnatural"

since we allow repeated labels and ambiguous overloaded application.

Goodness of Nested Composition

- [Nested record composition] Key feature of Compositional Programming⁸.
 - $\circ~$ solves the Expression Problem naturally.
 - $\circ~$ models forms of family polymorphism.

⁸Weixin Zhang, Yaozhu Sun, and Bruno C. d. S. Oliveira. "Compositional Programming". In: ACM Transactions on Programming Languages and Systems (TOPLAS) 43.3 (2021), pp. 1–61.

Goodness of Nested Composition

- [Nested record composition] Key feature of Compositional Programming⁸.
 - $\circ~$ solves the Expression Problem naturally.
 - $\circ~$ models forms of family polymorphism.
- [Nested function composition] It enables first-class curried overloaded functions.
 - overloaded functions are default curried;
 - we can abstract and return overloaded functions in a flexible way;
 - $\circ~$ it's a novel and interesting finding in this work.

⁸Weixin Zhang, Yaozhu Sun, and Bruno C. d. S. Oliveira. "Compositional Programming". In: ACM Transactions on Programming Languages and Systems (TOPLAS) 43.3 (2021), pp. 1–61.

Challenges in Type Inference

In traditional calculi, we have the typing rule for application:

$$\frac{\Gamma \vdash e_1 \Rightarrow A \to B \qquad \Gamma \vdash e_2 \Leftarrow A}{\Gamma \vdash e_1 e_2 \Rightarrow B} \text{ T-App}$$

This does not apply to case show 1, where

$$\frac{\Gamma \vdash show \Rightarrow A \& B \qquad \Gamma \vdash e_2 \Leftarrow ?}{\Gamma \vdash e_1 e_2 \Rightarrow ?} \text{ T-App}$$

Challenges in Type Inference

A direct method is to:

- 1. assume we have the argument type *A*;
- 2. assume the type of function to be a intersection of function types:

$$(A_1 \rightarrow B_1) \& (A_2 \rightarrow B_2) \& \dots \& (A_n \rightarrow B_n)$$

Challenges in Type Inference

A direct method is to:

- 1. assume we have the argument type *A*;
- 2. assume the type of function to be a intersection of function types:

$$(A_1 \rightarrow B_1) \& (A_2 \rightarrow B_2) \& \dots \& (A_n \rightarrow B_n)$$

3. then iterate intersection types by comparing the argument type A and input type A_i ;

Challenges in Type Inference

A direct method is to:

- 1. assume we have the argument type *A*;
- 2. assume the type of function to be a intersection of function types:

$$(A_1 \rightarrow B_1) \& (A_2 \rightarrow B_2) \& \dots \& (A_n \rightarrow B_n)$$

- 3. then iterate intersection types by comparing the argument type A and input type A_i ;
- 4. compose the outputs as the result type

Challenges in Dynamic Semantics

A direct method is to:

1. assume the overloaded function to be a merge of functions,

Challenges in Dynamic Semantics

A direct method is to:

- 1. assume the overloaded function to be a merge of functions,
- 2. then select correct instances according to the types.

Challenges in Dynamic Semantics

A direct method is to:

- 1. assume the overloaded function to be a merge of functions,
- 2. then select correct instances according to the types.
 - call-by-value strategy
 - type-dependent semantics

Distributivity Breaks the Assumptions

```
pshow : Unit -> (Int -> String) & (Bool -> String)
pshow = \lambda x. show
pshow unit 1 \hookrightarrow "1"
pshow unit true \hookrightarrow "true"
```

Distributivity Breaks the Assumptions

```
pshow : Unit -> (Int -> String) & (Bool -> String)
pshow = \lambda x. show
pshow unit 1 \hookrightarrow "1"
pshow unit true \hookrightarrow "true"
```

- pshow is **not** a merge of functions (wrapped in a lambda);
- its type is **not** a intersection of function types;
- it's still treated as an overloaded function.

Re-interpret Subtyping

We can have two interpretations of $A \ll B \rightarrow C$:

• Suppose A, B and C are given, we tell whether the subtyping holds.

 $(Int \rightarrow String) \& (Bool \rightarrow String) <: Int \rightarrow String$

• Suppose A and B are given, we infer the result type C^9 .

 $(Int \rightarrow String) \& (Bool \rightarrow String) <: Int \rightarrow ?$

⁹which is also the type of overloaded application.

Applicative Subtyping

$A \ll S$ is a specialized subtyping used to infer the type of applications and projections ¹⁰.

$$A_1 \rightarrow A_2 \ll B = A_2$$
 when $B <: A_1$ (1)

$$A_1 \to A_2 \ll B = . \qquad \qquad \text{when } \neg (B <: A_1) \tag{2}$$

$$\{l = A\} \ll l = A \tag{3}$$

$$\{l_1 = A\} \ll l_2 = . \qquad \qquad \text{when } l_1 \neq l_2 \tag{4}$$

$$A_1 \& A_2 \ll S = (A_1 \ll S) \odot (A_2 \ll S) \tag{5}$$

$$A \ll S = .$$
 otherwise (6)

 $^{{}^{10}}S ::= A \mid l$, Selector *S* is either type *A* or label *l*

Examples of Applicative Subtyping

show 1

$$(Int \rightarrow String) \& (Bool \rightarrow String) \ll Int$$

by (5) $\hookrightarrow (Int \rightarrow String) \ll Int \odot (Bool \rightarrow String) \ll Int$
by (1) (2) $\hookrightarrow String \odot$.

read "1"

$$(String \rightarrow Int) \& (String \rightarrow Bool) \ll String$$

by (5) $\hookrightarrow (String \rightarrow Int) \ll String \odot (String \rightarrow Bool) \ll String$
by (1) $\hookrightarrow Int \odot Bool$

Composition Operators

One version that implements nested composition semantics ¹¹.

 $^{^{\}scriptscriptstyle\rm II}\text{We}$ have another version of the operator which models the overloading semantics

Examples (applying nested composition semantics)

 $(Int \rightarrow String) \& (Bool \rightarrow String) \ll Int = String$ $(String \rightarrow Int) \& (String \rightarrow Bool) \ll String = Int \& Bool$ $\{x : String\} \& \{y : String\} \ll y = String$

Let arguments go "together"

We infer both the type of function (merges) and argument together and then compute.

$$\frac{\Gamma \vdash e_1 \Rightarrow A \qquad \Gamma \vdash e_2 \Rightarrow B \qquad A \ll B = C}{\Gamma \vdash e_1 e_2 \Rightarrow C} \text{ T-App}$$

Examples (applying nested composition semantics)

We assume Γ is $f: I \to I \to I, g: I \to B \to B$.¹²

f, ,g
 (f, ,g) 2
 (f, ,g) 2 true

¹² I stands for Int, B stands for Bool.

Metatheory

$$(Int \rightarrow String) \& (Bool \rightarrow String) \ll Int = String$$

 $(String \rightarrow Int) \& (String \rightarrow Bool) \ll String = Int \& Bool$
 $\{x : String\} \& \{y : String\} \ll y = String$

$$(Int \rightarrow String) \& (Bool \rightarrow String) <: Int \rightarrow String$$

 $(String \rightarrow Int) \& (String \rightarrow Bool) <: String \rightarrow Int \& Bool$
 $\{x : String\} \& \{y : String\} <: \{y : String\}$

Metatheory

Lemma (Soundness (Function))

If $A \ll B = C$, then $A <: B \rightarrow C$.

Lemma (Completeness (Function)) If $A <: B \rightarrow C$, then $\exists D, A \ll B = D \land D <: C$.

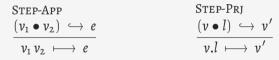
e.l

Calculi Syntax

Expressions	$e ::= x \mid i \mid e : A \mid e_1 e_2 \mid \lambda x . e : A \rightarrow B \mid e_1, , e_2 \mid \{l = e\}$
Raw Values	$p::=i \lambda x.e:A ightarrow B$
Values	$v ::= p : A^o v_1, , v_2 \{l = v\}$
Contexts	$\Gamma ::= \cdot \mid \Gamma, x : A$

- Values carry extra annotations as runtime types;
- The dispatching is based on runtime types;
- The restriction on runtime types settles a canonical form of overloaded functions.

Operational Semantics



Applicative Dispatching ¹³

$$(v \bullet vl) \hookrightarrow e$$

(Applicative Dispatching)

$$\frac{v \longmapsto_{A} v'}{((\lambda x. e : A \to B) : C \to D \bullet v) \hookrightarrow e[x \mapsto v'] : D} \qquad \begin{array}{l} \begin{array}{l} \begin{array}{l} \operatorname{App-Proj} \\ \hline (\{l = v\} \bullet l) \hookrightarrow v \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} \operatorname{App-Mrg-L} \\ \hline (\{v_2 \land \ll \langle vl \rangle = . & (v_1 \bullet vl) \hookrightarrow e \end{array} \\ \hline ((v_1, , v_2) \bullet vl) \hookrightarrow e \end{array} \end{array} \qquad \begin{array}{l} \begin{array}{l} \begin{array}{l} \operatorname{App-Mrg-R} \\ \hline \langle v_1 \rangle \ll \langle vl \rangle = . & (v_2 \bullet vl) \hookrightarrow e \end{array} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} \operatorname{App-Mrg-R} \\ \hline ((v_1, , v_2) \bullet vl) \hookrightarrow e \end{array} \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} \operatorname{App-Mrg-R} \\ \hline ((v_1, , v_2) \bullet vl) \hookrightarrow e \end{array} \end{array} \end{array} \qquad \begin{array}{l} \begin{array}{l} \begin{array}{l} \operatorname{App-Mrg-R} \\ \hline ((v_1, , v_2) \bullet vl) \hookrightarrow e \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} \operatorname{App-Mrg-R} \\ \hline ((v_1, , v_2) \bullet vl) \hookrightarrow e \end{array} \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} \operatorname{App-Mrg-R} \\ \hline ((v_1, , v_2) \bullet vl) \hookrightarrow e \end{array} \end{array} \end{array} \end{array}$$

Type Soundness

Theorem (Preservation)

If
$$\cdot \vdash e \Leftrightarrow A \text{ and } e \longmapsto e'$$
, then $\cdot \vdash e' \Leftarrow A$.

Theorem (Progress)

If $\cdot \vdash e \Leftrightarrow A$, then e is a value or $\exists e', e \longmapsto e'$.

More in the paper

- Sound/complete lemmas in the settings of records.
- Three variants of sound/complete lemmas with regard to different subtyping.
- Second calculus with disjoint restriction, is proved to be type sound and deterministic.
- Racket interpreter implementation of the calculi.

Coq Formalisation & Interpreter Implementation "https://github.com/juniorxxue/applicative-intersection"

Q & A.