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A new programming language is often elaborated by introducing different features. Some
of those features are not orthogonal, and their combination risks breaking the safety of the
whole system, especially in statically typed languages. Also, the newly coming feature is
conventionally reasoned in isolation or in a ratherminimised calculus. It is not surprising for
language researchers and implementers to desire a general framework that contains features
as much as possible and has salient extensibility. Intersection types are a nice fit for this
purpose.
Calculi with intersection types have been used over the years to model various features,

including: overloading, extensible records and, more recently, nested composition and return
type overloading. Nevertheless, no previous calculus supports all those features at once.
In this thesis, we study expressive calculi with intersection types and a merge operator.

Our first calculus supports an unrestricted merge operator, which is able to support all the
features, and is proven to be type sound. However, the semantics is non-deterministic. In
the second calculus we employ a previously proposed disjointness restriction, to make the
semantics deterministic. Some forms of overloading are forbidden, but all other features are
supported.
The main challenge in the design is related to the semantics of applications and record

projections. We propose an applicative subtyping relation that enables the inference of result
types for applications and projections. Correspondingly, there is an applicative dispatching
relation that is used for the dynamic semantics. The two calculi and their proofs are for-
malised in the Coq theorem prover and we have a prototype implementation as well.

An abstract of 260 words
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1 Introduction

1.1 Motivation

Inventing new programming languages is no longer big news in recent years. For new pro-
gramming languages, a paradigm or principle is usually established first, which will be elab-
orated by introducing different features. Some of those features are not orthogonal, and
their combination risks breaking the safety of the whole system, especially in statically typed
languages. On the other hand, programming languages are not designed at once. In real-
ity, many features are extended after a prototype is settled. Thus extensibility is the primary
concern when designing programming languages.
In a theoretical setting, the newly coming feature is conventionally reasoned in isolation

or in a rather minimised calculus. The combination of the new features and other existing
features will not be examined thoroughly, making more complete languages hard to model,
maintain and extend. It is not surprising for language researchers and implementers to desire
a general framework that contains features as much as possible and has salient extensibility.
Intersection types are a nice fit to serve as a general framework to model many features,
argued in Dunfield [2014],

“our goal is to use intersections and unions as general mechanisms for encoding
language features, so we really should do it in full generality, or not at all.”

Intersection types [Barendregt et al. 1983; Coppo et al. 1981; Pottinger 1980; Reynolds
1991] have a long history in programming languages. They were originally introduced to as-
sign meaning to canonical forms in strongly normalising lambda terms by Pottinger [1980].
Reynolds [1988] was the first to promote the use of intersection types in practical program-
ming. He introduced a merge operator that enables building values with multiple types,
where the multiple types are modelled as intersection types. Dunfield [2014] refined the
merge operator to add significant additional expressive power over the original formulation
by Reynolds. Over the years, there have been several calculi with intersection types equipped
with a merge operator, and enabling different features: overloaded functions [Castagna et al.
1995;Dunfield 2014], return type overloading [Marntirosian et al. 2020], extensible records [Dun-
field 2014; Reynolds 1988] and nested composition [Bi et al. 2018; Huang et al. 2021].
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1 Introduction

In the following part of this chapter, we give an overview of these features encoded by
intersection types and show their interactions.

1.1.1 Overloading

Function overloading is a form of polymorphism where the implementation of functions
can vary depending on the different types of arguments that are applied by functions. There
are many ways to represent types of overloaded functions. For example, suppose show is an
overloaded function that can be applied to either integers or booleans.

Haskell utilises type classes [Wadler and Blott 1989] to assign the type Show a ⇒ a →
String to showwith instances defined. The key idea of type classes is to combine the feature
of parametric polymorphism and ad-hoc polymorphism by specifying constraints on the
polymorphic variables. Practically in C++, overloaded functions are represented as a set of
candidate functions. The arguments list and candidate functions will be used in overloading
resolution based on a large group of sophisticated rules.

With intersection types, we can represent the overloaded show function in a relativelymore
straightforward way. For instance, the show function has the below type:

show : (Int → String) & (Bool → String)

Generally speaking, the type of overloaded functions is the type intersection of their different
branches. The function show has two branches: showInt and showBool, thus the type of their
overloads is Int → String intersected with Bool → String.

1.1.2 Return type overloading

Return type overloading is another form of overloading. The common example is Haskell’s
read :: Read a ⇒ String → a; it accepts a string and returns its parsed value (integers,
booleans etc.). Their implementation is not determined in function application. Instead, it
is determined by the surrounding type contexts. For example, succ (read "1") returns the
integer 2 if succ is the successor function that takes an integer and return its successor. The
type definition works the same with show:

read : (String → Int) & (String → Bool)

2



1.1 Motivation

1.1.3 Extensible Records

Records are useful for modelling features in Object-Oriented Programming. In record cal-
culi, the records are interpreted as objects; labels are member names; associated values are
attributes and methods. Inheritance can be modelled as concatenation of records [Cardelli
and Mitchell 1991].

In calculi with intersection types, multi-field records can be viewed as syntactic sugar.

{x : A, y : B} desugars to {x : A} & {y : B}

With this encoding, we obtain the width subtyping of records ({li : Ti}i=1..n..n+k <: {li :
Ti}1..n) for free since it is subsumed by the subtyping of intersection types (A & B <: A).
For the depth subtyping, it is also easy to extend this rule into the subtyping of intersection
types without affecting other rules. The permutation rule is subsumed by the commutativity
of intersection types.

1.1.4 Nested Composition

Nested composition reflects the distributivity properties of intersection types at the term
level. When eliminating terms created by themerge operator (usually functions and records),
the results extracted from nested terms will be composed. Nested composition is not an in-
dependent feature; it comes into use when we combine it with another feature of intersection
types (e.g., overloading and extensible records).
In the context of records, the distributive subtyping rule enabling nested composition is

{l : A} & {l : B} <: {l : A &B}

Nested record composition is a key feature in Compositional Programming (CP) [Zhang
et al. 2021]. It plays an important role in solving challenging modularity problems such as
the Expression Problem [Wadler 1998] and models forms of family polymorphism [Ernst
2001]. We show CP code here to illustrate how the Compositional Programming style solves
the expression problem in two dimensions.

Pre-defined Language We start with defining the type Eval and the compositional in-
terface AddSig. Eval defines a method eval which returns an integer as the output. AddSig
works similarly to an interface in Java and declares two constructors Lit and Add. Expworks
like a type parameter and can be instantiated by a type. For example, in the trait evalAdd,
Exp is instantiated by Eval. We then build a concrete expression expAdd.

3
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type Eval = { eval : Int };
type AddSig<Exp> = {
Lit: Int → Exp;
Add: Exp → Exp → Exp;

};
evalAdd = trait implements AddSig<Eval> ⇒ {
(Lit n).eval = n;
(Add e1 e2).eval = e1.eval + e2.eval;

};

expAdd Exp = trait [self : AddSig<Exp>] ⇒ {
exp = Add (Lit 4) (Lit 8);

};

Adding Operations Adding new operations is straightforward: we define a new type
Print and construct a trait printAdd by instantiating Exp by type Print in AddSig.

type Print = { print : String };
printAdd = trait implements AddSig<Print> ⇒ {
(Lit n).print = toString n;
(Add e1 e2).print = "(" ++ e1.print ++ " + " ++ e2.print ++ ")";

};

Adding Datatypes To add a new datatype, we extend the compositional interface AddSig
with a new constructor: Mul. We can then implement the trait evalMul and printMul by
instantiating the type parameter with Eval and Print. We then build a concrete expression
expMul.

type MulSig<Exp> = AddSig<Exp> & {
Mul : Exp → Exp → Exp;

};
evalMul = trait implements MulSig<Eval> inherits evalAdd ⇒ {
(Mul e1 e2).eval = e1.eval * e2.eval;

};
printMul = trait implements MulSig<Print> inherits printAdd ⇒ {
(Mul e1 e2).print = "(" ++ e1.print ++ " * " ++ e2.print ++ ")";

};
expMul Exp = trait [self : MulSig<Exp>] inherits expAdd @Exp ⇒ {
override exp = Mul super.exp (Lit 4);

};

4



1.2 Problems and Challenges

Figure 1.1: Nested Composition in Expression Problem

Nested Composition To build a new expression which supports a new operation and a
new datatype, we use the merge operator to compose them together. We demonstrate this
idea in Figure 1.1. We can see that those three figures are composed nestedly with all the
hierarchies combined together.

e = new evalMul , printMul , expMul @(Eval & Print);

Nested composition can also occur with functional intersections, using the below subtyp-
ing rule and enables the overloaded function to be curried.

(A → B) & (A → C) <: A → (B & C)

1.2 Problems and Challenges

We listed some features that intersection types equipped with a merge operator can model.
Nevertheless, no previous calculus supports all four features together. Some calculi enable
function overloading [Castagna et al. 1995], but preclude return type overloading and nested
composition. On the other hand, calculi with disjoint intersection types [Bi et al. 2018;
Huang et al. 2021] support return type overloading and nested composition but disallow
conventional functional overloading. Dunfield’s calculus [Dunfield 2014] supports the first
three features but not nested composition. Those features are not completely orthogonal,
and the interactions between them are interesting, allowing for new applications. However,
the interactions also pose new technical challenges.

1.2.1 Inference of Projections and Applications

In traditional type systems, in applications e1 e2 or projections e.l, e1 is expected to have an
arrow type and e is expected to have a record type. Such convention, however, cannot apply
to our system because certain forms of intersection types can also play the role of arrow or
record types. In particular, such use cases of intersection types are helpful for modelling

5
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overloaded functions and multi-field records. For example, we know that showInt is one
branch of show with the subtyping statement:

(Int → String) & (Bool → String) <: Int → String

From this examplewe can see that the dynamic semanticsmust somehowbe type-dependent.
In our work we follow the type-directed operational semantics (TDOS) [Huang et al. 2021]
approach, which chooses between merged functions according to type information during
runtime. However, existing TDOS approaches do not support overloading for two reasons.
Firstly, TDOS requires merged functions to be disjoint with each other, but in this case the
merged functions are not disjoint (i.e., Int → String is not disjoint with Bool → String
because of the common return type String). Secondly, even if we would simply ignore the
disjointness restriction, wewould still need to put an explicit type annotation Int → String
and write the program as (show : Int → String) 1 to select the correct implementation
to apply from the overloaded show function. This is because previous TDOS calculi have
restricted application rules that cannot accommodate traditional overloading. Clearly, in a
setting with overloading, having to write such explicit annotations would be unsatisfying.
Therefore we wish to have an approach where we can write overloaded functions naturally.
A similar problem occurs using record projections in existing TDOS calculi. For instance,

the type system of λi+ [Huang et al. 2021] requires explicit annotations for projections of
multi-field records with distinct labels, such as ({x = 1},,{y = true} : {x : Int}).x.
This is of course, quite unnatural to write. Although source languages targetting the TDOS
calculi can eliminate the explicit use of such annotations at the source level, it would be better
to address this problem directly in the TDOS.

1.2.2 Dynamic Semantics

Giving a direct semantics to overloaded applications is a non-trivial problem. Thanks to
the merge operator and the call-by-value strategy, our overloaded functions are expected
to be in the form of nested merges according to the structure of types. So we can reason
about the dynamic semantics as we deal with the types. Unfortunately, the distributivity
of subtyping complicates the story. The challenge comes from the fact that in our setting
overloaded functions are first-class. That is, they can be taken as arguments or returned as
results. For instance, we can have:

pshow : Unit → (Int → String) & (Bool → String)
pshow = λx. show

6
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In this situation, an overloaded function is wrapped with a lambda abstraction, while it
should also be viewed as an overloaded function. For example, we expect the following to
hold:

pshow unit 1 ↪→ "1" pshow unit true ↪→ "true"

In the last two cases, with a traditional approach to applications, pshow is expected to have
type Unit → Int → String and Unit → Bool → String respectively. From the per-
spective of intersection overloading, pshow should be of type (Unit → Int → String)
& (Unit → Bool → String), which, however, is different from the given type annotation.
This alternative view of types and functions poses challenges to the design of the static as well
as the dynamic semantics.

1.2.3 Ambiguities in the Design Space

A particular challenge with overloading and merges is ambiguities. Ambiguities can happen
both with record projections and/or overloading. Repeated labels are always a concern in
designing the concatenation of records. Whether to allow repeated labels leads to different
designs of records. Ambiguities in function overloading are more complicated. We identify
two key problems of overloading ambiguities below.

Ambiguities on the input types In languages like C++ and Java, overloading cannot be
defined on return types, and ambiguities are detected when the input types of overloaded
functions overlap. This is also a reason why many works model the inputs of overloaded
functions as product types [Castagna et al. 1995; Dunfield 2014; Kaes 1988]. The advantages
are obvious: it is easier to resolve the correct branch by only comparing the product types
and types of arguments. The drawback of this model is that product types will prevent over-
loaded functions to be curried. This is because overloaded functions based on product types
expect a tuple containing all the arguments and reject partial applications. The challenge
of modelling overloaded curried functions is that partial applications may be insufficient to
fully determine the implementation to take from the overloaded function. These pains can
be alleviated using intersection types, the merge operator and the feature of nested compo-
sition.

f : Int → Int → Int g : Int → Bool → Bool

For example, with f,,g, we can simply reason that the result of (f,,g) 1 true is g 1 true.
The problem occurs in the partially applied term (f,,g) 1, for which there are two possible
design choices. The first choice is to reject this application term since we cannot select be-
tween overloads, thus forbidding many use cases like this. Another choice is to apply f and
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g in parallel to 1, resulting in (f 1),,(g 1), which has the type (Int → Int) & (Bool →
Bool).

Ambiguities on the output types Output types are usually not considered in common
languages, especially when input types are not likely to cause ambiguities. Unfortunately, in
a formal systemwith an unrestrictedmerge operator, we can always create a term fitting both
branches. For example, we can apply show to 1,,true, and the result is "1",,"true", which
potentially loses determinism, since term "1",,"true" can be reduced to "1" or "true"
under the cast of String. In conclusion, whatever the input types are, there is always a risk
to break determinism if the output types are the same under the context of an unrestricted
merge operator. There is also a concern in modelling return type overloading since there
exist ambiguities when the surrounding context cannot distinguish between instances.

1.3 Key Ideas and Contribution

This thesis studies expressive calculi with intersection types and a merge operator. Our goal
is to design calculi that deal with all four features at once and study the interaction between
these features. Our twomain focuses are on type inference for applications and record projec-
tion, and the design of the operational semantics for such calculi. To enable all the features,
we introduce a specialised form of subtyping, called applicative subtyping, to deal with the
flexible forms of applications and record projection allowed by the calculi. Correspondingly,
there is an applicative dispatching relation that is used for the dynamic semantics. In ad-
dition, we explore the interactions between features. In particular, overloading and nested
composition enable curried overloaded functions, while most previous work [Bobrow et al.
1988; Castagna et al. 1995; Dunfield 2014; Kaes 1988] only considers uncurried overloaded
functions.

1.3.1 Applicative Subtyping

To help with the inference of the result types for applications and projections, we propose
a new specialized subtyping algorithm for applications and projections. Specifically, con-
ventional subtyping algorithms take two types as inputs, and return a boolean indicating
whether two types are in a subtyping relation or not. We present an applicative subtyping al-
gorithm, whose intuition is simple: given a functional typeA (which may be an intersection
of functions), and the type of an argument B, it tells whether this function can be applied
to this argument and, if yes, it computes the output type. Similarly, given a record type A,
and a label l, applicative subtyping tells whether this record can be projected by this label,
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and if yes, it computes the result type associated with this label. Basically, we try to solve the
problem in the following subtyping form (denoted as <:), where we infer the type ? given
the argument type Int:

(Int → String) & (Bool → String) <: Int →?

This problem can be split into two steps: first, check whether the application is well-typed,
and if so, determine its output type. For the above example, ? is expected to be String, as Int
is an argument to Int → String. Record projection works similarly. String & Int should
be derived as the result type for projection ({x = "hello"},,{x = 1}).x.

{x : String} & {x : Int} <: {x :?}

Applicative subtyping is used when typing applications and projections. Our algorithm
adopts the notion of selectorsS that abstract the arguments (as a type for applications, or a la-
bel for projections). The behaviour of applicative subtyping for intersection types is captured
by a simple composition operator ⊚ which isolates particular design choices. In applicative
subtyping, a possible result is that the application fails. We denote failure with a . symbol.
We illustrate the results of applicative subtyping (denoted as�) for the above examples next.

(Int → String) & (Bool → String) � Int = String ⊚ .
(String → Int) & (String → Bool) � String = Int ⊚ Bool
{x : String) & {y : String} � x = String ⊚ .
{x : String) & {x :Int} � x = String ⊚ Int

Ambiuguities To deal with the ambiguities we mentioned in the last section, we isolate
the behaviour when both branches can accept the selector type. We can reject or accept the
below case when we adopt different composition operators, which will be expanded in the
Chapter 3.

(Int → Int) & (Int → Bool) � Int = Int⊚ Bool.

Another solution to avoid ambiguities and recover determinism is to adopt disjoint intersec-
tion types, which is mentioned in the next section and is explored in Chapter 5.

Correctness We prove the soundness and completeness of the applicative subtyping with
regard to the normal subtyping. We have several variants of the metatheory and only show
the function case here. The details will be expanded in Chapter 3.

Lemma 1.1 (Soundness). If A � B = C , then A <: B → C .
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Lemma 1.2 (Completeness). If A <: B → C , then ∃D,A � B = D ∧D <: C .

1.3.2 TDOS for Overloading

For the semantics, we follow up the idea of typed-directed operational semantics [Huang
et al. 2021] and define a new judgment that performs applicative dispatching to support over-
loading. At a high level, applicative dispatch reflects applicative subtyping in the dynamic
semantics. As we analyzed above, distributivity forbids overloaded functions to be exact
nested merges, thus a canonical form of overloaded function should be settled. To solve this
problem we use an explicit merge with extra annotations that play a role of “runtime types”,
which are used by applicative dispatching to select the correct branch during runtime.

1.3.3 Two Calculi

We present two calculi to demonstrate the applicative subtyping and applicative dispatching.
The first calculus embraces a simple design and adopts an unrestricted merge operator. All
features mentioned above can be encoded in this calculus, but the calculus will have a non-
deterministic semantics due to ambiguities. For ambiguities, we present a second calculus,
which adopts a restrictedmerge operator: only terms with disjoint types can bemerged. This
calculus is deterministic but excludes certain forms of overloading, like the show function.
Since Int → String is not disjoint with Bool → String, such merges will be rejected.

1.3.4 First-class Curried Overloaded Functions

First-class curried overloading is considered a novel feature when we designed this system.
It appears when the system has both overloading and nested composition and is a powerful
idiom where programmers can abstract over and return overloaded functions. For example,
we create our overloaded function show by merging two implementations together. pshow is
the show function wrapped in a thunk.

show : (Int → String) & (Bool → String)
show = showInt,,showBool

pshow : Unit → (Int → String) & (Bool → String)
pshow = λx. show

The newly created function pshow is still recognised as an overloaded function; it makes the
selection when the second arguments are given. We see the examples below.

pshow () ↪→ show pshow () 1 ↪→ "1" pshow () true ↪→ "true"
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In the last two cases, with a traditional approach to applications, pshow is expected to have
type Unit → Int → String and Unit → Bool → String respectively. From the per-
spective of intersection overloading, pshow should be of type (Unit → Int → String)
& (Unit → Bool → String), which, however, is different from the given type annotation.
This alternative view of types and functions makes the overloaded functions flexible to pro-
gram with.

1.3.5 Summary

In summary, the contributions of this thesis are:

• Calculi supporting overloading, extensible records and nested composition. We propose
calculi with intersection types and a merge operator, which can support various fea-
tures together, unlike previous calculi, where only some features were supported.

• Applicative subtyping and dispatching. We develop a specialised applicative subtyping
relation to deal with the problem of inferring output types for applications and record
projections. In addition, the dynamic semantics supports a corresponding applicative
dispatching relation.

• First-class, curried overloading: We show that the interaction between overloading and
nested composition enables overloaded functions to be first-class, which allows the
definition of curried overloaded functions.

• Interpreter Implementation: We implement our calculus as a Lisp dialect. We enrich
the implementationwith several primitives and syntactic sugar and employ a contract-
based function to ensure the correctness of the interpreter.

• Mechanical formalisation : All the subtyping algorithms, calculi and proofs are for-
malised in the Coq theorem prover.

1.4 Outline and Published work

This thesis is organised as follows:

• Chapter 2 gives an introduction to basic concepts and notational preliminaries.

• Chapter 3 discusses application typing problems and challenges and presents several
applicative subtyping designs.
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• Chapter 4 presents type sound calculus with an unrestricted merge operator, which
supports all features mentioned previously.

• Chapter 5 enrich the previous calculus with disjointness and prove its determinism.

• Chapter 6 gives interpreter implementation of our calculi.

• Chapter 7 shows the related work and their differences.

• Chapter 8 concludes this thesis and gives directions for future work.

Publications This thesis is partially based on the below publications.

Xu Xue, Bruno C. d. S. Oliveira and Ningning Xie “Applicative Intersection
Types” In The 20th Asian Symposium on Programming Languages and Systems
(APLAS 2022).

Artifact The mechanical formalisation and interpreter implementation can be found at:

https://github.com/juniorxxue/applicative-intersection
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2 Background

In this chapter, basic concepts and notational preliminaries will be explained in detail. This
part is helpful for readers to gain some intuition and references in order to better understand
and evaluate the rest of the thesis. Section 2.1 introduces the Simply Typed λ-Calculus and
the notion of subtyping, then discusses their combination with bidirectional typing: λ≤.
Section 2.2 explains intersection types, themerge operator and their applications. Section 2.3
presents a calculus introduced by Dunfield, which serves as a starting point of our system.
Section 2.4 introduces the main idea of type-directed operational semantics.

2.1 Simply Typed λ-Calculus with Subtyping

The λ-Calculus is a formalisation of a mathematical model that describes computation. It
has inspired the designs of many mainstream programming languages (Python, JavaScript,
etc.) and has also been adopted as the basis of functional programming languages such as
Scheme, Haskell, etc.

2.1.1 Simply Typed λ-Calculus

Theprototype of theλ-Calculus was firstly introduced by Church [1932] to serve as the foun-
dation ofmathematics. Its inconsistencywas pointed out byKleene andRosser [1935]. Later,
Church revised it, introduced untyped λ-Calculus and then augmented it with types tomake
it become logically consistent [Church 1940]. The λ-Calculus with simple types (base types
and arrow types) is called the Simply Typed λ-Calculus (STLC).

Theusage of types develops into the design of the type system, where themost fundamental
property is type safety, described by Milner [1978]:

Well-typed programs cannot “go wrong”1.

Practically, type safety 2 ensures that the type-checker will detect all stuck terms before
the evaluation. In STLC, well-typed programs are expressions which can be type-checked.
1“Wrong” does not mean that we can exclude all bad cases, only part of them, like add an integer to a string
2People usually treat type safety and type soundness as synonyms, but for clarity, we only use type soundness
to describe the theorem that can be formally stated and proved.
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Terms in the λ-Calculus are literals, variables, abstractions and application. Types are literal
types and arrow types (also called function types). A context is a sequence of pairs between
variables and their types.

Expressions e := i | x | λx : A. e | e1 e2
Types A,B := Int | A → B

Context Γ := ∅ | Γ, x : A

In syntax,

• i is used for literals, for simplicity we only consider it as numbers.

• λ is often used for the prefix name of a calculus, or a lambda abstraction in the λ-
Calculus.

• x, y, z are reserved for bound variables in the λ-Calculus.

• A,B,C are reserved for type variables.

• ei is used for terms.

• Γ describes a typing context, which is a sequence of pairs (x,A).

With the syntax of expressions, types and context defined, we will introduce a relation
called typing assignment in Figure 2.1, which is a 3-ary relation between context Γ, term e

and type A. Rule T-Lit states that literals have integer types. Rule T-Var says that variable
x has the type A if the context Γ has their association. Rule T-Lam is the rule for lambda
abstractions: λx : A. e has the arrow type A → B if the body e has the type B under the
context Γ extended with a pair x : A. The application rule T-App derives the output type
from e1 and checks the equality between the input type and the type of argument e2. With
the typing rules, we will reject ill-typed terms like 1 2 (literal 1 is applied to argument 2) since
1 does not have a function type.
The typing assignment relation defines the statics of the language, while semantics defines

its dynamics. There aremany approaches to define semantics, including denotational seman-
tics [Schmidt 1986], operational semantics [Plotkin 1981] and axiomatic semantics [Goguen
et al. 1977]. This thesis only focuses on operational semantics, since it is closer to the com-
putation intuition and implementation details.
Before presenting the reduction rules of the operational semantics, the normal form of this

language should be established to characterise the end of the computation process. Reducible
terms are called redexes. An expression containing no redexes is in normal form. The normal
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2.1 Simply Typed λ-Calculus with Subtyping

Γ ` e : A (Typing)

T-Lit

Γ ` i : Int

T-Var
x : A ∈ Γ

Γ ` x : A

T-Lam
Γ, x : A ` e : B

Γ ` λx : A. e : A → B

T-App
Γ ` e1 : A → B Γ ` e2 : A

Γ ` e1 e2 : B

Figure 2.1: STLC Typing

e 7−→ e′ (Small-Step Reduction)

ST-Beta

(λx : A. e) v 7−→ e[x 7→ v]

ST-App-L
e1 7−→ e′1

e1 e2 7−→ e′1 e2

ST-App-R
e2 7−→ e′2

v1 e2 7−→ v1 e
′
2

Figure 2.2: STLC Operational Semantics

form defines the possible structure of termination of reduction, which is represented by value
under the context of operational semantics. A value is either a literal or a lambda abstraction
in the STLC.

Values v := i | λx : A. e

In Figure 2.2, rule ST-App-L and rule ST-App-R are normal congruence rules and account
for evaluating the arguments before they are substituted in the abstraction body. A more
interesting rule is rule ST-Beta, which introduces a new operation: substitution. Substitution
essentially describes substituting one expression for a variable in another expression. Dealing
with capture-avoiding substitution often involves cumbersome reasoning, we will use the
technique of Locally Nameless Representation [Charguéraud 2012] for the formalisation of
our calculi in Coq.

2.1.2 Subtyping

Subtyping arises as one of the critical features in Object-Oriented Programming. It describes
the behaviour (often called subtype polymorphism) that terms can be safely replaced by other
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A ≤ B (Subtyping)

S-Refl

A ≤ A

S-Trans
A ≤ B B ≤ C

A ≤ C

S-Arr
B1 ≤ A1 A2 ≤ B2

A1 → A2 ≤ B1 → B2

S-Top

A ≤ Top

Figure 2.3: STLC Subtyping

terms typed with their subtype. Reflecting on the typing relation would be the typing sub-
sumption rule.

Ty-Sub
Γ ` e : A A ≤ B

Γ ` e : B

Rule Ty-Sub says that if e has the typeA andA is the subtype ofB, then e has the typeB.
The intuition to understand the subsumption is to think of it as the feature of object-oriented
programming, where the term typed with a subclass can also have the superclass type. We
formally define the subtyping in Figure 2.3. A ≤ B is the subtyping relation, which can be
viewed as a preorder of sets of two types.

Rule Sub-Refl and rule Sub-Trans define the properties of reflexivity and transitivity.
Rule S-Arr describes the subtyping relation of arrow types: input types are contravariant
and output types are covariant. Rule S-Top employs a new Top type, which is the supertype
of all types.

2.1.3 Bidirectional Typing

Initially, a typing judgment only accounts for a type assignment system, which is oftenwritten
in the form of

Γ ` e : A

Bidirectional typing introduces a notion of mode [Warren 1978] into typing: synthesis mode
and check mode.

• Synthesis Mode (⇒): Synthesize a type from an expression, which can be implemented
as a infer function, with typing context Γ and expression e as inputs and the typeA as
output.
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Γ ` e ⇔ A (Bidirectional Typing)

Ty-Lit

Γ ` i ⇒ Int

Ty-Var
x : A ∈ Γ

Γ ` x ⇒ A

Ty-Lam
Γ, x : A ` e ⇒ B

Γ ` λx : A. e ⇒ A → B

Ty-App
Γ ` e1 ⇒ A → B Γ ` e2 ⇐ A

Γ ` e1 e2 ⇒ B

Ty-Ann
Γ ` e ⇐ A

Γ ` e : A ⇒ A

Ty-Sub
Γ ` e ⇒ A A ≤ B

Γ ` e ⇐ B

Figure 2.4: Bidirectional Typing

• CheckMode (⇐): Check an expression with a specific type, which can be implemented
as a check function, with typing context Γ, the expression e and the type A as inputs
and booleans indicating success or failure as output.

Bidirectional typing originated from Pierce and Turner [2000] and is extremely helpful
for typing a system with subtyping by adding type annotations. The typing of STLC with
subtyping can be introduced by bidirectionalizing each rule in Figure 2.4. There are two
rules to trigger the check mode: rules Ty-App and Ty-Ann. Rule Ty-App expects e1 to infer
the arrow type and use the input type A to check the argument e2. Rule Ty-Ann uses the
annotated type to check the term e.
In conclusion, there are several advantages of bidirectional typing:

• It is easy to extend the type system to support subtyping.

• The feature of local type inference enables simpler syntax and localises the error infor-
mation.

2.1.4 Metatheory

In the setting of operational semantics, type soundness can be determined by preservation
and progress [Wright and Felleisen 1994]. There are three properties we are interested in:

Theorem 2.1 (Preservation). If ∅ ` e : A and e 7−→ e′, then ∅ ` e′ : A.

Preservation tells that the type of expression will be preserved during the evaluation. This is
not the case when there is subtyping, where the type may become smaller. We can slightly
modify this theorem in the presence of subtyping.

Theorem 2.2 (Preservation). If ∅ ` e : A and e 7−→ e′, then ∃B, ∅ ` e′ : B and B ≤ A.
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Theorem 2.3 (Progress). If e is well-typed, then e is a value or ∃e′, e 7−→ e′.

The progress theorem ensures that any well-typed expression is either a value or makes a
progress.

Theorem 2.4 (Determinism). If e is well-typed, e 7−→ e1 and e 7−→ e2, then e1 = e2.

Determinism is a strong property which requires each reduction step is deterministic.

2.2 Intersection Types andMerge Operator

Wehave already seen one compound type in STLC: arrow types. In this section, we introduce
another one: intersection types. We then introduce the merge operator, which is able to
create terms inhabited by intersection types.

2.2.1 Intersection Types

Intersection types (denoted as A & B) were firstly introduced in Coppo et al. [1981] as a
theoretical notion to describe the properties of λ terms. Simply speaking, intersection types
enable one term to have multiple types. As presented in typing rules, a term e can have the
intersection types if e has both the type A and the typeB.

&-Intro
Γ ` e : A Γ ` e : B

Γ ` e : A &B

&-Elim-L
Γ ` e : A &B

Γ ` e : A

&-Elim-R
Γ ` e : A &B

Γ ` e : B

If types are treated as a way to describe sets of terms, then intersection types are introduced
to describe conjunctive forms. Calculi with intersection types will have many interesting
properties. For example, they can type check terms which are impossible to be checked by
simple types. The self-application term λx : A & (A → B). x x cannot be typed in STLC
but it is a well-typed term in calculi with intersection types.
Although it is meaningless to find some terms which is the intersection of integers and

booleans, things will become more interesting when we create intersection types of more
complex terms (e.g., functions, records and interfaces). Intersection types have already been
adopted by many programming languages, including TypeScript, Scala etc.

2.2.2 Merge Operator

The merge operator (denoted as , ,) has been introduced by Reynolds [Reynolds 1988], and
later refined by Dunfield [Dunfield 2014], to create terms with intersection types at the term
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level. An important feature of Dunfield’s calculus is that it contains a completely unrestricted
merge operator, which enables most of the applications that we will discuss in this thesis, ex-
cept for nested composition. However, this expressive power comes at a cost. The semantics
of the calculus is ambiguous. For example, 1,,2 : Int can elaborate to both 1 and 2. Note
that intersection types in the presence of the merge operator have a different interpretation
from the original meaning [Coppo et al. 1981], where type intersections A & B are only
inhabited by the intersection of the sets of values of A and B. In general, with the merge
operator, we can always find a term for any intersection type, even when the two types in the
intersection are disjoint (i.e. when the sets of values denoted by the two types are disjoint).
For example, 1,,true has the type Int & Bool. In many classical intersection type systems
without the merge operator, such type would not be inhabited [Pottinger 1980]. Thus, the
use of the term “intersection” is merely a historical legacy. The merge operator adds expres-
sive power to calculi with intersection types. As we shall see, this added expressive power is
useful to model several features of practical interest for programming languages.

2.2.3 Applications of Merge Operator

To show that the merge operator is useful, we now cover four applications of the merge op-
erator that have appeared in the literature: records and record projections, function over-
loading, return type function overloading and nested composition. All applications can all
be encoded by our calculus in Chapter 4.

Records andRecordProjections The idea of using themerge operator tomodel record
concatenation firstly appears in Reynolds [1997]. Records in our calculi are modelled as
merges of multiple single-field records. Multi-field records can be viewed as syntactic sugar
and {x = "hello", y = "world"} is simply ({x = "hello},,{y = "world"}). The be-
haviour of record projection is mostly standard in our calculi. After being projected by a
label, the merged records will return the associated terms. For instance (↪→ denotes reduce
to).

({x = "hello"}, , {y = "world"}).x ↪→ "hello"

Function overloading Function overloading is a form of polymorphism where the im-
plementation of functions can vary depending on the different types of arguments that are
applied by functions. There are many ways to represent types of overloaded functions. For
example, suppose show is an overloaded function that can be applied to either integers or
booleans. Haskell utilises type classes [Wadler and Blott 1989] to assign the type Show a ⇒
a → String to show with instances defined.
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With intersection types, we can employ themerge operator [Castagna et al. 1995; Reynolds
1988] to define a simplified version of the overloaded show function. For instance, the show
function below has type (Int → String) & (Bool → String).

show : (Int → String) & (Bool → String) = showInt,,showBool

The behaviour of show is standard, acting as a normal function: it can be applied to argu-
ments and the correct implementation is selected based on types.

show 1 ↪→ 1 show true ↪→ "true"

Return type overloading One common example of return type overloading is the read
function in Haskell,

read :: Read a ⇒ String → a

which is the reverse operation of show and parses a string into some other form of data. Like
show, we can define a simplified version of read using the merge operator:

read : (String → Int) & (String → Bool) = readInt,,readBool

In Haskell, because the return type a cannot be determined by the argument, read either
requires programmers to give an explicit type annotation, or needs to automatically infer the
return type from the context. Our calculi work in a similar manner. Suppose succ is the
successor function on integers and not is the negation function on booleans, then we can
write:

succ (read "1") ↪→ 2 not (read "true") ↪→ false

Nested Composition Simply stated, nested composition reflects distributivity properties
of intersection types at the term level. When eliminating terms created by themerge operator
(usually functions and records), the results extracted fromnested termswill be composed. In
the context of records, the distributive subtyping rule enabling this behaviour is {l : A}& {l :
B} <: {l : A &B}. With this rule we can have the following expression:

({x = "hello"},,{x = 1}).x ↪→ "hello",,1

Note that here we allow repeated fields with the same name. One may worry about am-
biguities but, with a disjointness restriction, we can only accept fields with the same labels
if the types of the fields are disjoint. Nested composition is a key feature in compositional
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programming [Zhang et al. 2021], which uses it to solve challenging modularity problems
such as the Expression Problem [Wadler 1998], and to model forms of family polymorphism
[Ernst 2001]. We refer interested readers to the work of Zhang et al. [2021] for details.
Nested composition can also occur with functional intersections, using the subtyping rule

(A → B) & (A → C) <: A → (B & C). With this rule, we can, for example, write the
following expression:

(succ,,intToDigit) 5 ↪→ 6,,"5"

which applies two functions to the integer 5. Note that here intToDigit takes an integer
and returns a corresponding character. We will also see that nested composition enables
overloaded functions to be curried.

2.3 Dunfield’s Calculus

In this section, we will give an introduction to Dunfield’s calculus [Dunfield 2014], which
aims to provide a general mechanism to subsume different features, including overloading,
records and heterogeneous data. In her calculus, intersection types and merge operator are
introduced in the syntax. For simplicity, we ignore the union types here.

2.3.1 Syntax

We first present the (source) syntax of the calculus.

Expressions e := () | x | λx. e | e1 e2 | e1, , e2

Types A,B := > | A → B | A &B

Context Γ := ∅ | Γ, x : A

Values v := x | () | λx. e | v1, , v2

The expressions e are conventional except for the merge expression e1, , e2, which de-
scribes that two expressions can be merged by a merge operator , ,. The types A are top
types, function types and intersection types. Values are most standard, except for merges
v1, , v2 even though they can step further.

2.3.2 Subtyping and Typing

Subtyping is shown in Figure 2.5. The rules for arrow and intersection types are standard.
The bidirectional typing is shown in Figure 2.6. Rule T-Mrg-Inf is the introduction typing
rule for the merge operator, e1, , e2 has the type A1 & A2 if e1 has the type A1 and e2 has
the type A2. Rule T-Mrg-Inf-K is the elimination rule, e1, , e2 has the type A if one of the
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A ≤ B (Subtyping)

S-Arr
B1 ≤ A1 A2 ≤ B2

A1 → A2 ≤ B1 → B2

S-Top

A ≤ Top

S-And-K
Ak ≤ B

A1&A2 ≤ B

S-And
A ≤ B1 A ≤ B2

A ≤ B1&B2

Figure 2.5: Dunfield’s Subtyping

Γ ` e : A (Bidirectional Typing)

T-Var
x : A in Γ

Γ ` x ⇒ A

T-Mrg-CHK-K
Γ ` ek ⇐ A

Γ ` e1 , , e2 ⇐ A

T-Mrg-Inf-K
Γ ` ek ⇒ A

Γ ` e1 , , e2 ⇒ A

T-Mrg-Inf
Γ ` e1 ⇒ A1 Γ ` e2 ⇒ A2

Γ ` e1 , , e2 ⇒ A1&A2

T-Lam
Γ, x : A ` e ⇐ B

Γ ` λx. e ⇐ A → B

T-App
Γ ` e1 ⇒ A → B Γ ` e2 ⇐ A

Γ ` e1 e2 ⇒ B

T-Ann
Γ ` e ⇐ A

Γ ` e : A ⇒ A

T-Sub
Γ ` e ⇒ A A ≤ B

Γ ` e ⇐ B

Figure 2.6: Dunfield’s Typing

branch (e1 or e2 has the type A). The design is flexible to encode many features: including
function overloading and record projection, though leading to non-deterministic inference
since it is not syntax-directed.

Feature Encoding The typing is very powerful and enables inference for the application.
For example, show is the merge of showInt and showBool. We show the typing example for
the show 1,

∅ ` showInt ⇒ Int → String

∅ ` show ⇒ Int → String
T-Mrg-Inf-K

∅ ` 1 ⇐ Int

∅ ` show 1 ⇒ String
T-App

22



2.4 Type-Directed Operational Semantics

2.3.3 Elaboration Semantics

Dunfield’s calculus employs a non-deterministic elaboration semantics. The calculus with
intersection types can be elaborated to the calculus with product types. In the elaboration,
the explicit elimination of product types will be inserted after the type checking. Note that
there is also a operational semantics, though it simply helps check the correctness of the
elaboration and does not actually model the computation process.

2.4 Type-Directed Operational Semantics

In classical calculi (e.g., Simply Typed Lambda Calculi), types are usually erased in the dy-
namic semantics. In contrast with type-erasure semantics, type-dependent (also known as
type-passing semantics) makes use of the types in the evaluation to make run-time decisions.

Inmore realistic programming languages where types are required to assist the evaluation,
the elaboration semantics is often adopted. That is to say, languages with runtime decisions
are elaborated to another language without them. A notable example is type classes, which
is an approach to support parametric overloading and has been incorporated as the main
feature in languages like Haskell. The main idea is to translate a function typed with class
into a function with a dictionary which will be passed at the runtime. This inspires many
designs like implicits in Scala [Oliveira et al. 2010] and instance arguments in Agda [Devriese
and Piessens 2011].

Type-dependent semantics still has its own advantages over the elaboration semantics,
though the latter is usually chosen in a practical sense.

• Elaboration semantics is usually given indirectly and complicates the reasoning since
we need to study both the semantics of source and target languages. Furthermore,
the metatheory of coherence is quite challenging since the equivalence needs to be
established.

• The standard determinism and subject-reduction can be proved using direct seman-
tics, while those cannot be proven in elaboration semantics.

One recent work of type-dependent semantics is typed-directed operational semantics
(TDOS) [Huang andOliveira 2020]. It is firstly introduced for calculi with intersection types
and a merge operator. It enables a natural proof of determinism and subjection-reduction of
the calculi.
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2 Background

The main idea of TDOS is the utilisation of type annotations. Type annotations are dis-
carded in many conventional languages with operational semantics. It instead will be used
in two places in TDOS:

• Trigger theCasting: Annotating valueswill force them to be cast into the corresponding
items according to the type provided.

• Typed Reduction: The casting judgment v 7→A v′ (originally called typed reduction)
accept one input value v and one input type A, then cast v into another value v′ ac-
cording to the type A. For example, 1,,true : Int will be evaluated to 1.

TDOS has also been studied to support gradual typing and assist its runtime checking [Ye
et al. 2021].
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3 Applicative Subtyping

In this section, we start with an introduction to classical subtyping algorithms for intersec-
tion types, discuss some design options to deal with the inference of applications, and then
present applicative subtyping. Applicative subtyping is able to compute the output type of
applications in the presence of overloading and nested composition. Then we make an anal-
ogy of record projections. Thus, in the context of calculi with intersection types, applicative
subtyping provides a unified solution to infer types for applications and record projections.
Two versions of subtyping of intersection types are presented: one is the subtypingwithout

distributivity and one is the BCD subtyping with distributivity included. Then we interpret
each rule in terms of overloading and projection and describe several challenges of deal-
ing with the inference of the application types and projection types. In the following, we
develop our two main methods: application mode and applicative subtyping. Application
mode can be treated as a stack-based resolution of applicative subtyping and corresponds to
the subtyping without distributivity. Instead, applicative subtyping instantly computes the
application types without the necessity of collecting all the argument types and corresponds
to the distributive subtyping. We examine the metatheory of applicative subtyping in the
last.

3.1 Types

We start with the syntax of types:

Types A,B ::= Int | Top | A → B | A &B

Ordinary Types Ao, Bo ::= Int | Top | A → Bo

A and B are metavariables which range over types. Int and Top are base types and Top is
the supertype of all types. Compound types are function types A → B, intersection types
A & B. Ordinary types [Davies and Pfenning 2000; Huang et al. 2021] are essentially types
without intersection types, except for functions where intersection types can appear in argu-
ment types. As we will see later, ordinary types are helpful in the definition of algorithmic
subtyping.
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3 Applicative Subtyping

3.2 Subtyping and BCD Subtyping

Subtyping relations for intersection types can vary inwhether distributivity rules are included
or not. For calculi with intersection types, a common rule allows the intersection of arrow
types to distribute over arrows. We present two versions of subtyping and then derive our
approach, respectively.

3.2.1 Subtyping

A ≤ B (Subtyping)

S-Int

Int ≤ Int

S-Top

A ≤ Top

S-Arr
C ≤ A B ≤ D

A → B ≤ C → D

S-And
A ≤ B1 A ≤ B2

A ≤ B1&B2

S-And-L
A ≤ C

A&B ≤ C

S-And-R
B ≤ C

A&B ≤ C

Figure 3.1: Subtyping

In Figure 3.1, we present the rules for subtyping. Rules S-Int and S-Top describes base
types Int and Top, Int is the subtype of itself and Top is the supertype of any type. For
functions, rule S-Arr says that A → B is the subtype of C → D if A is the supertype of C
and B is the subtype ofD. On the other hand, the subtyping relation of their input types is
contravariant and the subtyping relation of their output types is covariant.

Rules S-And, S-And-L, and S-And-R are used for intersections, type A is the subtype of
the intersection typeB1 &B2 if it is the subtype of both branchesB1 andB2. The intersec-
tion type A &B is the subtype of C if there exists one branch that is the subtype of C .

Remark We can prove that the subtyping relation is reflexive and transitive. Thus the fol-
lowing two rules are derivable from the rules in Figure 3.1.

S-Refl
A ≤ A

S-Trans
A ≤ B B ≤ C

A ≤ C
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3.2 Subtyping and BCD Subtyping

A1 ◁A▷A2 (Splittable Types)

Sp-And

A◁A&B ▷B

Sp-Arr
B1 ◁B ▷B2

A → B1 ◁A → B ▷A → B2

A <: B (Subtyping)

Sub-Int

Int <: Int

Sub-Top

A <: Top

Sub-Arr
C <: A B <: Do

A → B <: C → Do

Sub-And
B1 ◁B ▷B2 A <: B1 A <: B2

A <: B

Sub-And-L
A <: Co

A&B <: Co

Sub-And-R
B <: Co

A&B <: Co

Figure 3.2: Splittable Types and BCD Subtyping

3.2.2 BCD Subtyping

One well-known subtyping relation with such a distributivity rule is BCD subtyping [Baren-
dregt et al. 1983].

S-Distr
(A → B) & (A → C) ≤ A → (B & C)

Rule S-Distr says intersection types can distribute over function types. Huang et al.
[2021] provide a sound and complete algorithm for BCD subtyping by eliminating the tran-
sitivity rule and employing the notions of ordinary types and splittable types. Splittable types
describe that types can be split into two simpler types and ordinary types are those which
cannot be split.

We present splittable types and the subtyping relation in Figure 3.2 (To distinguish be-
tween the above subtyping relation, we use<: instead of≤ here). Rule Sub-And is the most
interesting rule as it captures the distributivity of intersection types over function types. This
rule splits the typeB into two typesB1 andB2 and proceeds by testing whether A is a sub-
type of bothB1 andB2, and saysA is the subtype ofB ifA are subtypes of its splitsA1 and
A2. Rules Sub-And-L and Sub-And-R describe that intersection typeA &B is the subtype
of ordinary type C if one of them is the subtype of it.
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3 Applicative Subtyping

Metatheory The algorithmic BCD subtyping has the following interesting properties:

Lemma 3.1 (Generalisation of subtyping).

• If B <: D and C <: A, then A → B <: C → D.

• If A <: C , then A & B <: C .

• If B <: C , then A & B <: C .

Lemma 3.2 (Reflexivity of BCD Subtyping). A <: A.

Lemma 3.3 (Transitivity of BCD Subtyping). If A <: B and B <: C , then A <: C .

3.3 Intersection Subtyping and Overloading

In this section, we will study the connection between intersection subtyping and function
overloading in detail. Since the two variants of subtyping are shown above, we provide two
interpretations of overloading. One is the overloading resolution with all the arguments
given, which fits into our familiar knowledge of overloading. Another interpretation is rather
simple and novel: curried overloading.

3.3.1 Interpretation of Subtyping Rules

Intersection types are naturally useful for representing types of overloaded functions. The
type of overloaded functions is the and (&) combination of types from each instance. For
example, if show has two instances: showInt and showBool. Then the type of show is (Int
→ String) & (Bool → String).

As we mentioned above, subtyping describes the relation between types. The subtyping
of intersection types is useful for telling us information about overloading. Note that in the
relationA ≤ B, the left sideA plays the role of (overloaded) functions, and the right sideB
plays the role of arguments and results (take it for granted for now).

• Rule S-Arr tells that for a function having the typeA → B, with an argument typeC
and a result typeD given, we check their correctness via the subtyping relations.

• Rules S-And-L and S-And-R tells that C can be derived out if some of A & B can
derive out the C . This is also helpful for telling us whether one branch belongs to the
overloading instances. For example, we can know that showInt is one branch of show
with the subtyping statement: (Int → String) & (Bool → String) <: Int →
String.
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3.3 Intersection Subtyping and Overloading

• Rule S-Distr is the interesting rule. After this rule is added, we can know (A →
B) & (A → C) is isomorphic with A → (B & C). Reflecting in values (terms),
λx. e1, , λx. e2 should be “isomorphic” with λx. (e1, , e2) in some sense. This will
introduce the new notion, we name it first-class curried overloaded function.

3.3.2 Intersection Subtyping, Partially

Previously we assumed that the subtyping relation builds on the fact that the result type for
applications is known. However, this is not the case in overloaded applications where only
the argument types are known. Basically, we try to solve the problem in the following form,
where we infer the type ? given the argument type Int:

(Int → String) & (Bool → String) <: Int →?

We then introduce the relationA <: P ⇝ O where P stands for partial types andO stands
for output types. The original subtyping can be treated as a special case whenA <: B ⇝ ∅ .
The formal definition of P andO is shown as follows,

Partial Types P ::= A | A→

Output Types O ::= A | ∅

Then, the corresponding rules are specially adapted for partial types,

S-Arr-Par
C <: A

A → B <: C→ ⇝ B

S-And-L-Par
A <: C→ ⇝ D

A &B <: C→ ⇝ D
S-And-R-Par

B <: C→ ⇝ D

A &B <: C→ ⇝ D

With new rules, we can conclude some interesting cases. For example, the result type of
showInt,,showBool 1 is String.

Int <: Int

Int → String <: Int→ ⇝ String
S-Arr-Par

(Int → String) & (Bool → String) <: Int→ ⇝ String
S-And-L-Par
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3 Applicative Subtyping

The challenging part is how to deal with the case f,,g 1 where f has the type Int → Int
→ Int and g has the type Int → Bool → Bool1. According to our rules shown, there are
two possible results: Int → Int and Bool → Bool. Both are not ideal. We then can have
two choices here:

• Reject because it cannot make a choice. Then dealing with the case f,,g 1 true,
where g can be selected according to the two arguments 1 and true, is still a prob-
lem.

• Accept and derive the result (Int → Int) & (Bool → Bool), which corresponds to
the distributivity rule in subtyping.

We will develop two choices in section 3.5 and 3.6.

3.4 Challenges of Application Typing

In a traditional type system with bidirectional typing, we expect that our typing rule for
applications is in the following form.

Γ ` e1 ⇒ A → B Γ ` e2 ⇐ A

Γ ` e1 e2 ⇒ B
T-App

Rule T-App does two things. The first is to check whether e1 e2 is well-typed, which requires
e1 to infer the arrow type, and e2 can be checked by the input from the arrow type. Second,
it infers the type for the application term (e.g.,B in this case).

The story becomes different when we introduce intersection types, which may cause the
type of e1 to be an intersection type, which is

Γ ` e1 ⇒ A &B Γ ` e2 ⇐ ?

Γ ` e1 e2 ⇒ ?
T-App

In this situation, we cannot simply extract the input type fromA&B to check e2, and cannot
derive the result type for the application term.

1Merge operator has higher precedence than application.
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3.5 Application Mode

3.5 ApplicationMode

To address this problem, we borrow the idea of an application mode [Xie and Oliveira 2018].
At first, this idea looks promising, but a more careful look reveals some issues.

The Application Mode Xie and Oliveira [2018] suggested an alternative approach to
bidirectional type checking that employs a generalisation of the inference mode. The key
idea is to use the type from arguments to infer the function type. In their work, the infer-
ence focuses on the higher-rank polymorphic function. The application mode generalises
the synthesis mode, and Γ ` e ⇒ A is syntactic sugar when the argument stackΨ is empty.
With the application mode the rule for applications is:

Γ ` e2 ⇒ A Γ p Ψ, A ` e1 ⇒ A → B

Γ p Ψ ` e1 e2 ⇒ B
T-App

Themotivating example for demonstrating the advantages of the application mode is to type
check the term (λx. x) 1. In a traditional system with bidirectional typing, (λx. x) requires
an explicit annotation since the untyped lambda abstract should be in check mode. Under
the application mode, we can give the typing derivations for this term.

. ` 1 ⇒ Int . p Int ` λx. x ⇒ Int → Int

. ` (λx. x) 1 ⇒ Int
T-App

Here we can make an analogy and use this technique to infer the function type with inter-
section types. Since intersection types A & B play the role of finite polymorphic type. For
instance, show 2 should select branch showInt and has the type String.

. ` 1 ⇒ Int . p Int ` showInt,,showBool ⇒ Int → String

. ` showInt,,showBool 1 ⇒ String
T-App

Wepresent a design of a stack-based approach in Figure 3.3. RuleAs-Refl is the reflexivity
rule: typeA returns the type itself when the argument is empty. Rule As-Arr keeps consum-
ing the arguments in the stack by eliminating the input types of arrow types. Rules As-And-L
and As-And-R derive the resultD from either the left or right branches. Note that we have
a special judgment Ψ ` A <: B in the premise as negation, which is the binary version of
Ψ ` A <: B and the negation Ψ ` A says any branches in A cannot accept the arguments
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3 Applicative Subtyping

Ψ ` A <: B (Applicative Subtyping)

AS-Refl

· ` A <: A

AS-Arr
C <: A Ψ ` B <: D

Ψ, C ` A → B <: C → D

AS-And-L
Ψ, C ` A <: D ¬Ψ, C ` B

Ψ, C ` A&B <: D

AS-And-R
Ψ, C ` B <: D ¬Ψ, C ` A

Ψ, C ` A&B <: D

Figure 3.3: Applicative Subtyping (Stack)

in the stack. By this design we can accept f,,g 1 true and reject f,,g 1. We show the
example below.

Int <: Int

Bool <: Bool · ` Bool <: Bool
AS-Refl

Bool ` Bool → Bool <: Bool
AS-Arr

Bool, Int ` (Int → Bool → Bool) <: Bool
AS-Arr

Bool, Int ` (Int → Int → Int) & (Int → Bool → Bool) <: Bool
AS-And-R

The accompanying typing for the application mode is shown in Figure 3.4. Rule Ty-Var
resolves the stack by computing the result for variables. Rule Ty-Lam is the standard rule for
lambda abstractions. Rule Ty-Lam-S resolves the stack by checking the types and types in
the stack. Rule Ty-App is the only rule to collect the types of arguments and push them to
the stackΨ. Rule Ty-Ann resolves the stack and derives the result. Rule Ty-Mrg is the stan-
dard rule. Rule Ty-Mrg infers the type which may come from either left or right branches
according to the stack given.

Challenges in Dynamic Semantics The reason that the application mode has not been
adopted in the calculi is that it is challenging to design the corresponding dynamic semantics.
In the statics, the idea is to collect all the types of arguments and then make the selection,
from outside to inside. Suppose f and g are functions with the following types.

f : Int → Int → Int g : Int → Bool → Bool

To infer the type f,,g 1 true, we will do three steps:

• First, we encounter true and push its type Bool into the stack.
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3.6 Applicative Subtyping

Γ p Ψ ` e ⇔ A (Applicative Typing)

Ty-Lit

Γ p · ` i ⇒ Int

Ty-Var
x : A ∈ T Ψ ` A <: B

Γ p Ψ ` x ⇒ A

Ty-Lam
Γ, x : A p · ` e ⇒ B

Γ p · ` λx. e : A → B ⇒ A → B

Ty-Lam-S
Γ, x : A p · ` e ⇒ B Ψ, C ` A → B <: D

Γ p Ψ, C ` λx. e : A → B ⇒ D

Ty-App
Γ p · ` e2 ⇒ A Γ p Ψ, A ` e1 ⇒ A → B

Γ p Ψ ` e1 e2 ⇒ B

Ty-Ann
Γ p · ` e ⇒ C C <: A Ψ ` A <: B

Γ p Ψ ` e : A ⇒ B

Ty-Mrg
Γ p · ` e1 ⇒ A Γ p · ` e2 ⇒ B

Γ p · ` e1, , e2 ⇒ A&B

Ty-Mrg-S-L
Γ p Ψ, A ` e1 ⇒ C Γ p · ` e2 ⇒ B

Γ p Ψ, A ` e1, , e2 ⇒ C

Ty-Mrg-S-R
Γ p Ψ, A ` e2 ⇒ C Γ p · ` e1 ⇒ B

Γ p Ψ, A ` e1, , e2 ⇒ C

Figure 3.4: Applicative Typing

• Next, we analyse 1 and push its type Int into the stack.

• Last, using the contents of the stack, we infer the type of f,,g is Int → Bool → Bool.

The order of type analysis is reversed from the operational semantics based on the call-by-
value strategy. In dynamic semantics of the λ-calculus, f,, g 1 should be evaluated first to
a value and we know nothing about the second argument.

3.6 Applicative Subtyping

Applicative subtyping is another approach to infer the types of applications and projections,
which is different from application mode in three ways.

• Applicative subtyping corresponds to the subtyping relation with distributivity, while
the application mode does not support distributivity.

• Applicative subtyping resolves the argument instantly and one-by-one, while the latter
resolves the argument stack after collecting all the arguments.
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3 Applicative Subtyping

A1 → A2 � B = A2 when B <: A1 (3.1)
A1 → A2 � B = . when ¬(B <: A1) (3.2)
A1 & A2 � S = (A1 � S)⊚ (A2 � S) (3.3)

A � S = . otherwise (3.4)

Figure 3.5: Applicative Subtyping

• The design of operational semantics of applicative subtyping is relatively easier while
the latter is challenging.

Applicative subtyping utilises the notion of selectors to find the correct output type from
applicable types. We consider applicable types to be function or record types. This relation
enables the type system to infer the type of applications and record projections. The typing
still adopts bi-directional typing, and unlike the traditional rules for applications and pro-
jections, we also infer the argument types to help the inference of application type. As we
can see below, applicative subtyping is used in the rule T-App and help compute the result
of applications.

T-App
Γ ` e1 ⇒ A Γ ` e2 ⇒ B A � B = C

Γ ` e1 e2 ⇒ C

Wemodel the types of arguments as selector types, and the outputs as being either a type or
nothing (denoting the failure to find a suitable output type).

Selector Types S ::= A

Outputs O ::= . | A

The definition of applicative subtyping is given in Figure 3.5. It has the form A � S = C

and it reads as the typeA can be selected by the selector type S and derive the result typeC .

Selector types are used as the second parameter and propagate through the subtyping
checks, until we reach arrow or record types. For arrow types, in rules (3.1) (3.2), we check
the contravariant subtyping between input type A1 and argument B. If successful, the out-
put type A2 is returned, otherwise we fail. For the case of the intersection types A1 & A2

(3.3), we introduce a composition operator⊚ to combine two results which are derived from
applying A1 and A2 with the same selector type B. Rule (3.4) covers a number of missing

34



3.6 Applicative Subtyping

cases (such as Int � S) which will all fail. For simplicity of presentation, we write those
rules as a single rule (3.4).
The composition operator ⊚ accepts output results and returns a new output result. The

isolation of the composition operator gives us the ability to model different forms of applica-
tive subtyping. We present two design options below.

Nested Composition Semantics Implementation For systems with BCD subtyping,
which includes distributivity rules, we use the combinator implementing the nested compo-
sition semantics.

A1 ⊚A2 = A1 & A2 (3.5)

A1 ⊚ . = A1 (3.6)

.⊚A2 = A2 (3.7)

.⊚ . = . (3.8)

If two outputs are both types, we return their intersection types A1 & A2 in (3.5). This rule
models the behaviour of nested composition, combining two results. In (3.6) and (3.7), if we
have at least one type, we just return that type. Finally, (3.8) means if neither output is a type
then we have to return nothing. Intuitively, we apply the arguments to different branches of
the overloaded function, if fail we ignore the result and if successful we will take the results
out and combine them using the & type constructor.

Overloading Semantics Implementation It is a rather restricted form of applicative
subtyping. We name it the overloading semantics implementation since if multiple imple-
mentations in an overloaded definition match with an argument, we reject the application.
This is similar to traditional overloading mechanisms, which reject such cases as a form of
ambiguity. In other words, in the overloading semantics, only one implementation can be
selected from an overloaded definition.

A1 ⊚A2 = Amb (3.9)

A1 ⊚ . = A1 (3.10)

.⊚A2 = A2 (3.11)

.⊚ . = . (3.12)
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3 Applicative Subtyping

(Int → String) & (Bool → String) � Int

by (3.3) ↪→ (Int → String) � Int⊚ (Bool → String) � Int

by (3.1) (3.2) ↪→ String ⊚ .

by (3.8) ↪→ String

(Int → Int) & (Int → Int) � Int

by (3.3) ↪→ (Int → Int) � Int⊚ (Int → Int) � Int

by (3.1) ↪→ Int⊚ Int

by (3.12) ↪→ Amb

Figure 3.6: Examples of Applicative Subtyping with different composition operators

The rule 3.12 says that if two outputs are both types, we return a type error Amb to denote the
ambiguity. This rule models the behaviour of overloading ambiguity checking in program-
ming languages.

Remark The approach of applicative subtyping with overloading semantics implementa-
tion is more rigid than the application mode version. This is because it will reject the unam-
biguous applications like f,,g 1 true since the first argument cannot make the selection.

Examples We give examples of our two design options in Figure 3.6. The first is the infer-
ence of application term show 1 and the return type is String. The second is the inference
of absurd case succ,,pred 1, and the result is a type error (Amb). The ideas are to recursively
delegate the selector type to the left and right branches. Then for the first, it combines the
left and right results. For the second, it outputs a Amb since both branches can accept the
argument, which leads to ambiguity.

3.7 Record Projection

In this section, we employ applicative subtyping to record projection and show that applica-
tive subtyping can also be used to compute the result type of projections.
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3.7 Record Projection

Intersection types can naturally support records with a single field record type added. For
records with multiple fields, we use the intersection type constructor to concatenate them.
For instance, {l1 : A, l2 : B, l3 : C} is essentially {l1 : A} & {l2 : B} & {l3 : C}.

Types A,B ::= Int | Top | A → B | A &B | {l : A}

Ordinary Types Ao, Bo ::= Int | Top | A → Bo | {l : Ao}

Further we integrate the rule S-Rcd for records in the subtyping: {l : A} is the subtype
of {l : B} if A is the subtype of B. To let the intersection types also distribute over record
types, we extend the splittable types with the record case.

A <: B

{l : A} <: {l : B}
S-Rcd

A1 ◁A▷A2

{l : A1}◁ {l : A}▷ {l : A2}
Sp-Rcd

In company with the rules for intersection types, encoded record types have the subtyping
properties developed in classical record calculi [Cardelli and Mitchell 1991]: width subtyp-
ing, depth subtyping and permutation.

The essential operation for records is projection, given a label and record, returns the val-
ues associatedwith the label. This problem is the samewith the overloaded application: given
an argument and overloaded functions, the result after applying the correct branch should
be returned. We can reuse our applicative subtyping by abstracting the label as selector types
and extending the new rules. For record types (3.15) (3.16), we check the equality between
labels. If the labels are equal, we return the output type A, otherwise we fail.

Selector Types S ::= A | l

A1 → A2 � B = A2 when B <: A1 (3.13)

A1 → A2 � B = . when ¬(B <: A1) (3.14)

{l = A} � l = A (3.15)

{l1 = A} � l2 = . when l1 6= l2 (3.16)

A1 & A2 � S = (A1 � S)⊚ (A2 � S) (3.17)

A � S = . otherwise (3.18)

Examples We illustrate the ideas by examples {x = 1, y = true}.x. The return type
is Int. We first recursively call both branches with the selector type (label x) and use the
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3 Applicative Subtyping

composition operator to combine their results. The left compares the equality and returns its
associated type Int; the right outputs a failure since label y is not equal to x.

{x : Int} & {y : Bool} � x

by (3.17) ↪→ {x : Int} � x⊚ {y : Bool} � x

by (3.15) (3.16) ↪→ Int⊚ .

by (3.10) ↪→ Int

3.8 Metatheory

We proved the soundness and completeness of our applicative subtyping with respect to nor-
mal subtyping. The decidability of applicative subtyping is straightforward since it is mod-
elled as a structurally recursive function. We have two versions of soundness and complete-
ness lemmas. The first version applies to the case where the supertype is a function:

Lemma 3.4 (Soundness (Function)). If A � B = C , then A <: B → C .

Proof. Induction on the A � B.

Lemma 3.5 (Completeness (Function)). IfA <: B → C , then ∃D,A � B = D∧D <: C .

Proof. Induction on the subtyping A <: B → C .

The soundness lemma is intuitive. If the result of checking applicative subtyping with a sub-
type A and input type B computes a type C then it should be the case that A <: B → C .
For completeness, we wish to show that if A is a subtype of a function type B → C then
applicative subtyping will always be able to find some output type D which is a subtype of
C .

The second version of the lemma, which applies to the case where the supertype is a record,
is defined in a similar manner.

Lemma 3.6 (Soundness (Record)). If A � l = B, then A <: {l : B}.

Lemma 3.7 (Completeness (Record)). If A <: {l : B}, then ∃C,A � l = C ∧ C <: B.
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3.8 Metatheory

Remark Note that, if we would drop the distributivity of intersections over other con-
structs by removing the rules Sp-Arr and Sp-Rcd, then to have soundness and complete-
ness we need to employ the composition operator implementing the overloading semantics.
When using that composition operator, the soundness lemmas remain the same, but we need
to adjust the completeness lemmas to consider the ambiguous cases. For instance, the com-
pleteness for the case of a function supertype would become:

Lemma 3.8 (Completeness). If A <: B → C , then (∃D,A � B = D ∧D <: C) ∨ A �
B = Amb.
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4 ACalculus withAnUnrestrictedMerge
Operator

This section presents a type sound calculus that supports both intersection types and amerge
operator. This calculus can be viewed as a variant ofDunfield’s calculus (without union types)
[Dunfield 2014]. Our calculus employs a type-directed operational semantics [Huang et al.
2021] instead of using elaboration semantics as proposed by Dunfield and adopts applica-
tive subtyping and distributive subtyping. Overloaded functions, nested composition and
multi-field records can all be encoded in this calculus. In contrast, in Dunfield’s calculus
distributivity and nested composition are not supported. Like Dunfield’s calculus, the pres-
ence of unrestricted merges makes the semantics non-deterministic. We address the issue of
non-determinism in the next section.

4.1 Syntax

The syntax of this calculus is:

Expressions e ::= x | i | e : A | e1 e2 | λx .e : A → B | e1, , e2 | {l = e} | e.l

Raw Values p ::= i | λx .e : A → B

Values v ::= p : Ao | v1, , v2 | {l = v}

Contexts Γ ::= · | Γ, x : A

Most expressions are standard. The lambda expression λx. e : A → B is fully annotated
because the operational semantics is type-directed. The expression e1, , e2 creates a merge of
two expressions e1 and e2. The expression {l = e} denotes a single-field record with label l
and field e. The projection of records is represented by e.l. Contexts are standard: Γ is a list
of bound variables x and their types A.

Raw values include integers and lambdas, and values are defined on raw values annotated
with ordinary types, merges of values and records whose fields are values. We stratify raw
values and values because we need to utilise annotations to adopt dispatching in the seman-
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4 A Calculus with An Unrestricted Merge Operator

Γ ` e ⇔ A (Bidirectional Typing)

T-Lit

Γ ` i ⇒ Int

T-Var
x : A ∈ Γ

Γ ` x ⇒ A

T-Lam
Γ, x : A ` e ⇐ B

Γ ` λx. e : A → B ⇒ A → B

T-Rcd
Γ ` e ⇒ A

Γ ` {l = e} ⇒ {l : A}

T-App
Γ ` e1 ⇒ A Γ ` e2 ⇒ B A � B = C

Γ ` e1 e2 ⇒ C

T-Proj
Γ ` e ⇒ A A � l = B

Γ ` e.l ⇒ B

T-Mrg
Γ ` e1 ⇒ A Γ ` e2 ⇒ B

Γ ` e1 , , e2 ⇒ A&B

T-Ann
Γ ` e ⇐ A

Γ ` e : A ⇒ A

T-Sub
Γ ` e ⇒ A A <: B

Γ ` e ⇐ B

Figure 4.1: Bi-directional Typing.

tics. The ordinary restriction on values enforces a canonical form for overloaded functions.
Overloaded functions will be reduced to explicit nested merges, even in settings with dis-
tributivity.

4.2 Typing

Figure 4.1 shows our bi-directional type system. Most of the rules are adapted from tradi-
tional bi-directional typing [Dunfield and Krishnaswami 2021]. The novel rules are rules T-
App and T-Proj, whose inferred type is derived from applicative subtyping.

4.2.1 Typing of Application and Projection

The common approach to typing applications is to infer the function type first, use the input
type to check the arguments, and assign the output type to applications. Our approach to
type applications [Xie and Oliveira 2018] is to infer type of functions and arguments at the
same time, pass their types into applicative subtyping (A andB in rule T-App), and assign the
computed result C to applications. This is because we allow intersection types to distribute
over arrow types, thus the type of the function can be an arrow type or an intersection type.
We cannot simply extract the input type of a function. Since multi-field records are also
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4.3 Semantics

intersection types in our system, the typing for projections (rule T-Proj) uses a similar idea
to applications. We infer the types of e and get the label l, pass it to applicative subtyping and
derive the result type for projections.

4.2.2 Examples

We show an example of how the rule T-App works. Suppose that we have Γ = f : I → I →
I, g : I → B → B. (I andB stand for Int and Bool)

Γ ` (f,,g) ⇒ (I → I → I) & (I → B → B) Γ ` 2 ⇒ I

Γ ` (f,,g) 2 ⇒ (I → I) & (B → B)
T-App

Γ ` true ⇒ B

Γ ` (f,,g) 2 true ⇒ B
T-App

To infer the type of (f,,g) 2 true, we first infer both the type of (f,,g) 2 and true. The
type of (f,,g) 2 is (Int → Int) & (Bool → Bool). This result is computed from ap-
plicative subtyping with two inputs: type of function merges f,,g and type of 2. Later we
use the computed result of (f,,g) 2 to derive our final type Bool.

4.2.3 Properties of Typing

Since our typing rules adopt techniques of bidirectional typing, there are some properties:

Lemma 4.1 (Uniqueness of Synthesis). If Γ ` e ⇒ A and Γ ` e ⇒ B, then A = B.

Lemma 4.2 (Checking Subsumption). If Γ ` e ⇐ A and A ≤ B, then Γ ` e ⇐ B.

4.3 Semantics

This calculus adopts a type-directed operational semantics [Huang et al. 2021], where type
annotations are used to cast terms instead of being erased after type checking.

4.3.1 Casting

We introduce the casting judgment in Figure 4.2. Judgment v 7−→A v′ describes that value
v is cast to another value v′ by type A, thus forcing the value to match the type structure of
A. The casting rules are essentially the same as the rules proposed by Huang et al. [2021].
Rules Ct-Mrg-L andCt-Mrg-R state thatmergeswill be cast to one result by ordinary types.
For example, showInt,,showBool will be cast to showInt by type Int → String.

Lemma 4.3 (Preservation of Casting). If Γ ` v ⇒ B and v 7−→A v′, then Γ ` v′ ⇐ A.
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4 A Calculus with An Unrestricted Merge Operator

v 7−→A v′ (Casting)

Ct-Int

i : A 7−→Int i : Int

Ct-Top

v 7−→Top > : Top

Ct-Rcd
v 7−→Ao v′

{l = v} 7−→{l:Ao} {l = v′}

Ct-Arr
E <: C → Do

(λx. e : A → B) : E 7−→(C→Do) (λx. e : A → Do) : (C → Do)

Ct-Mrg-L
v1 7−→Ao v′1

v1 , , v2 7−→Ao v′1

Ct-Mrg-R
v2 7−→Ao v′2

v1 , , v2 7−→Ao v′2

Ct-And
A1 ◁A▷A2 v 7−→A1 v1 v 7−→A2 v2

v 7−→A v1 , , v2

Figure 4.2: Casting

The preservation of castings states that the structure of the cast result v′ will match the type
provided.

Lemma 4.4 (Progress of Casting). If · ` v ⇐ A, then ∃v′, v 7−→A v′.

The progress lemma of castings states that a well-typed value can be cast to another value.
More specifically if this value can be checked by the type A, then it can be cast by the type
A. For example showInt,,showBool can be checked by the type Int → String, then it can
be cast by this type.

4.3.2 Applicative Dispatching

We introduce a new judgement called applicative dispatching (Figure 4.3), which extends
Huang et al. [2021] parallel application judgement. The idea of the parallel application is
simple: function merges will be parallel applied to arguments. In contrast to parallel appli-
cation, we must also deal with overloading. Judgment (v • vl) ↪→ e describes that value v is
applied to selectors vl and then reduced to a term e.

Selectors vl ::= v | l

Rule App-Lam performs beta-reduction and appends an extra annotation D to enforce the
output type of the application. Rule App-Proj simply extracts the value from the single
record field. The interesting part is the remaining three rules for merges. The function 〈vl〉
simply extracts out the type of a value or a label, to provide the types to be compared with
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4.3 Semantics

(v • vl) ↪→ e (Applicative Dispatching)

App-Lam
v 7−→A v′

((λx. e : A → B) : C → D • v) ↪→ e[x 7→ v′] : D

App-Proj

({l = v} • l) ↪→ v

App-Mrg-L
〈v2〉 � 〈vl〉 = . (v1 • vl) ↪→ e

((v1 , , v2) • vl) ↪→ e

App-Mrg-R
〈v1〉 � 〈vl〉 = . (v2 • vl) ↪→ e

((v1 , , v2) • vl) ↪→ e

App-Mrg-P
〈v1〉 � 〈vl〉 6= . 〈v2〉 � 〈vl〉 6= . (v1 • vl) ↪→ e1 (v2 • vl) ↪→ e2

((v1 , , v2) • vl) ↪→ e1 , , e2

Figure 4.3: Applicative Dispatching

applicative subtyping. For label, 〈l〉 simply returns the original value, and for values, 〈v〉
extracts the annotation from terms. It can be defined as a structurally recursive function.

〈l〉 = l

〈p : Ao〉 = Ao

〈v1, , v2〉 = 〈v1〉 & 〈v2〉

〈{l = v}〉 = {l : 〈v〉}

To deal with overloading we need to introduce rules App-Mrg-L and App-Mrg-R, which
allows amerge to be applied when only one of the values is applicable. The last rule, rule App-
Mrg-P deals with the parallel application, where both values in the merge can be applied.

Lemma 4.5 (Preservation of Applicative Dispatching (Function and Records)).

• If · ` v1 v2 ⇒ A and v1 • v2 ↪→ e, then · ` e ⇐ A.

• If · ` v.l ⇒ A and v • l ↪→ e, then · ` e ⇐ A.

The preservation lemma of applicative dispatching states that for a well-typed application or
projection term, their types will be preserved in the evaluation of the applicative dispatching
judgment.

Lemma 4.6 (Progress of Applicative Dispatching (Function and Records)).

• If · ` v1 v2 ⇒ A, then ∃e, v1 • v2 ↪→ e
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4 A Calculus with An Unrestricted Merge Operator

e 7−→ e′ (Small-Step Reduction)

Step-Int-Ann

i 7−→ i : Int

Step-Arr-Ann

λx. e : A → B 7−→ (λx. e : A → B) : A → B

Step-App
(v1 • v2) ↪→ e

v1 v2 7−→ e

Step-Pv-Split
A1 ◁A▷A2

p : A 7−→ p : A1 , , p : A2

Step-Prj
(v • l) ↪→ v′

v.l 7−→ v′

Step-Ann
¬e ∈ p e 7−→ e′

e : A 7−→ e′ : A

Step-Val-Ann
v 7−→A v′

v : A 7−→ v′

Step-App-L
e1 7−→ e′1

e1 e2 7−→ e′1 e2

Step-App-R
e2 7−→ e′2

v1 e2 7−→ v1 e
′
2

Step-Mrg-L
e1 7−→ e′1

e1 , , e2 7−→ e′1 , , e2

Step-Mrg-R
e2 7−→ e′2

v1 , , e2 7−→ v1 , , e
′
2

Step-Rcd-R
e 7−→ e′

{l = e} 7−→ {l = e′}

Step-Prj-L
e 7−→ e′

e.l 7−→ e′.l

Figure 4.4: Operational Semantics

• If · ` v.l ⇒ A, then ∃e, v • l ↪→ e.

Theprogress lemmaof applicative dispatching states thatwell-typed application or projection
terms are able to be evaluated by the applicative dispatching judgment.

4.3.3 Operational Semantics

Wepresent our small-step reduction rules in Figure 4.4. Rules Step-Int-Ann and Step-Arr-
Ann append extra annotations to the partial value, in order to preserve the precise types at
runtime. Rule Step-Pv-Splitwill split terms according to splittable types, forcing the type of
each branch in merges to be ordinary. Rules Step-App and Step-Prj directly call applicative
dispatching. Rule Step-Val-Ann triggers casting: v is cast to v′ by type A. Rule Step-Ann
is a congruence rule with a restriction that e cannot be a raw value p. The remaining rules
are normal congruence rules.

4.4 Type Soundness

We show the preservation lemmas of casting and applicative dispatching using the checking
mode. That is to say, the types are not exactly preserved in the evaluation. Instead, we can
only ensure that types can become smaller and is the subtype of original types. However, our
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4.4 Type Soundness

A ≈ B (Isomorphic Subtyping)

ISub-Refl

A ≈ A

ISub-Rcd
A ≈ B

{l : A} ≈ {l : B}

ISub-And
B1 ◁B ▷B2 A1 ≈ B1 A2 ≈ B2

A1&A2 ≈ B

Figure 4.5: Isomorphic Subtyping

calculus is more strict than that, the isomorphic form of the types will be preserved in the
reduction. We show the isomorphic subtyping in Figure 4.5 and prove a more strict version
of preservation.

4.4.1 Isomorphic Subtyping

Isomorphic subtyping is a restricted relation to describe relations between types. We show
the rules in Figure 4.5. Rule Isub-Refl describes that types are isomorphic with themselves.
Rule Isub-Rcd gives a special treatment for record types: {l : A} ≈ {l : B} if A ≈ B.
The reason why we distinguish function types and record types here is that we have slightly
different evaluation strategies for functions and records. For functions, we append an anno-
tation to it and make a split if applicable. For records, we evaluate the inner expression into
values. Rule Isub-And captures the essence of the isomorphic subtyping: the intersection
types are isomorphic subtyping to their corresponding splittable types. For example, (Int
→ String) & (Int → Bool) is isomorphic subtyping to Int → (String & Bool).
The isomorphic subtyping has the following properties:

Lemma 4.7 (Transitivity of Isomorphic Subtyping). If A ≈ B and B ≈ C , then A ≈ C .

Proof. Induction on the size of the typeB.

Lemma 4.8 (Soundness of Isomorphic Subtyping). If A ≈ B, then A <: B and B <: A

Lemma 4.9 (Applicative Subtyping and Isomorphic Subtyping (Function and Records)).

• If A � B = C , A′ ≈ A and B′ ≈ B, then ∃C ′, A′ � B′ = C ′ ∧ C ′ ≈ C .

• If A � l = B, A′ ≈ A, then ∃B′, A′ � l = B′ ∧B′ ≈ B.

4.4.2 Type Soundness

Type soundness is proven via standard preservation and progress theorems.
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4 A Calculus with An Unrestricted Merge Operator

Theorem 4.10 (Preservation). If · ` e ⇔ A and e 7−→ e′, then · ` e′ ⇒ A′ ∧A′ ≈ A.

Theorem 4.11 (Progress). If · ` e ⇔ A, then e is a value or ∃e′, e 7−→ e′.

Corollary 4.12 (Type Soundness). If · ` e ⇔ A and e 7−→∗ e
′, then e′ will not get stuck.
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5 ACalculus with ADisjointMerge
Operator

This section presents a second calculus with a disjointness restriction on merges [Oliveira
et al. 2016] to recover determinism. This calculus forbids some cases of conventional over-
loading but still supports the other features. We focus on the key differences from the pre-
vious calculus since most rules and relations are the same. Compared to previous calculi
with disjoint intersection types, the main novelty is the use of the applicative subtyping and
dispatching relations, which enables support for record projections and a restricted form of
overloading naturally (without redundant type annotations).

5.1 Disjointness

We employ the definition of disjointness proposed by Oliveira et al. [2016]. Informally, if all
common supertypes of two types are top-like types, we can conclude that the two types are
disjoint. Top-like types are those that are supertypes of all types (e.g., Top, Top & Top) and
defined in Figure 5.1.
The inclusion of such types into top-like types is also part of the classical BCD subtyping

relation [Barendregt et al. 1983]. A formal specification of disjointness is given below. There
is a sound and complete set of algorithmic disjointness rules that conform to this specifica-
tion. We present it in Figure 5.2.

Definition 1 (Disjointness). A ∗B ≜ ∀C if A <: C ∧B <: C , then C is top-like.

In our calculus we allow merges of disjoint functions and types such as Int → Int or Int
→ Bool are disjoint. To include function types into our disjointness, types like Int →
Top should be top-like and supertypes of all types, since otherwise Int → Int and Int →
Bool cannot be disjoint according to our definition. We follow previous work on disjoint
intersection types [Bi et al. 2018] and generalize our subtyping rule for rule S-Top.

S-Top
eBd

A <: B
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5 A Calculus with A Disjoint Merge Operator

eAd (Top-like Types)

Tl-Top

eTopd

Tl-And
eAd eBd
eA&Bd

Tl-Arr
eBd

eA → Bd

Tl-Rcd
eAd

e{l : A}d

Figure 5.1: Top-like types

A ∗B (Disjointness)

Dj-Top-L

Top ∗A

Dj-Top-R

A ∗ Top

Dj-Int-Arr

Int ∗A → B

Dj-Arr-Int

A → B ∗ Int

Dj-Arr-Arr
B ∗D

A → B ∗ C → D

Dj-Rcd-Eq
A ∗B

{l : A} ∗ {l : B}

Dj-Rcd-Neq
l1 6= l2

{l1 : A} ∗ {l2 : B}

Dj-Int-Rcd

Int ∗ {l : A}

Dj-Rcd-Int

{l : A} ∗ Int

Dj-Arr-Rcd

A → B ∗ {l : C}

Dj-Rcd-Arr

{l : A} ∗B → C

Dj-And-L
A ∗ C B ∗ C

A&B ∗ C

Dj-And-R
A ∗B A ∗ C

A ∗B &C

Figure 5.2: Algorithmic Disjointness

Disjointness has important properties, which are helpful for the metatheory of calculus. In
particular, if two types are disjoint, their applicative subtyping results under the same partial
types are also disjoint.

Lemma 5.1 (Covariance of Disjointness). If A ∗B and B <: C , then A ∗ C .

Lemma 5.2 (Applicative Subtyping and Disjointness). If A ∗ B, A � S = C1 and B �
S = C2, then C1 ∗ C2.

5.2 Disjointness and Applicative Subtyping

With themore general subtyping rule for top-like types, applicative subtyping remains sound
(with Lemma 3.4, Lemma 3.6 in Chapter 3) with respect to subtyping. However, the com-
pleteness of our applicative subtyping needs to be slightly adapted.
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5.3 Typing

Lemma 5.3 (Completeness of Applicative Subtyping). If A <: B → C , then (∃D,A �
B = D ∧D <: C) ∨ Top <: C .

In other words, applicative subtyping is complete except for the case where the output type
is top-like. In such case applicative subtyping fails. Note though that this failure prevents
strange programs from being type-checked. For example, subtyping has instances Top <:
A → Top, allowing (1 : Top) 2 to be well-typed, which would require special treatment in
the typing rules. We reject such cases, making the typing rules simpler, and avoiding type-
checking such programs.

5.3 Typing

Themain change in typing is that we add a disjoint premise in rule T-Mrg. We show the full
typing rules in Figure 5.3. Specially rule T-Mrg-Val is used to prove the consistency of the
evaluation and can be ignored in the implementation.

Γ ` e1 ⇒ A Γ ` e2 ⇒ B A ∗B

Γ ` e1, , e2 ⇒ A &B
T-Mrg

Remark Disjointness has its advantage over the coherence property, however, it rejects
some useful functions such as show. The side condition A ∗ B forbids the term typed with
(Int → String) & (Bool → String) since they are not disjoint according to the defini-
tion in Figure 5.2.

5.4 Dynamic Semantics

Most changes in the dynamic semantics are related to top-like types. Basically, we need some
extra conditions in the rules testing whether or not types are top-like. However, apart from
these minor changes, the rules remain essentially the same. We show two judgments in Fig-
ure 5.4 and Figure 5.5.
Since our value defines as raw values carrying annotation, the special term for Top is un-

necessary since we can use any constant terms (1 in our rules) with top-like types to replace
them. Rule Ct-Top says that values will be cast to a constant value 1 : Ao (we demonstrate
1 here for simplicity) by an ordinary top-like type.
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5 A Calculus with A Disjoint Merge Operator

Γ ` e ⇔ A (Bidirectional Typing)

T-Lit

Γ ` i ⇒ Int

T-Var
x : A ∈ Γ

Γ ` x ⇒ A

T-Lam
Γ, x : A ` e ⇐ B

Γ ` λx. e : A → B ⇒ A → B

T-Rcd
Γ ` e ⇒ A

Γ ` {l = e} ⇒ {l : A}

T-App
Γ ` e1 ⇒ A Γ ` e2 ⇒ B A � B = C

Γ ` e1 e2 ⇒ C

T-Proj
Γ ` e ⇒ A A � l = B

Γ ` e.l ⇒ B

T-Mrg
Γ ` e1 ⇒ A Γ ` e2 ⇒ B A ∗B

Γ ` e1 , , e2 ⇒ A&B

T-Mrg-Val
· ` u1 ⇒ A · ` u2 ⇒ B u1 ≈ u2

Γ ` u1 , , u2 ⇒ A&B

T-Ann
Γ ` e ⇐ A

Γ ` e : A ⇒ A

T-Sub
Γ ` e ⇒ A A <: B

Γ ` e ⇐ B

Figure 5.3: Bidirectional Typing (Disjointness)

5.5 Type Soundness and Determinism

All properties, including subject reduction and type soundness shown in the first calculus,
also hold in this calculus. We only focus on determinism here, which is the most interesting
property of the calculus with disjointness.

Lemma 5.4 (Determinism of Casting). If · ` v ⇒ A, v 7−→B v1 and v 7−→B v2, then
v1 = v2.

Lemma 5.5 (Determinism (Applications and Projections)).

• If · ` v1 v2 ⇒ A, v1 • v2 ↪→ e1 and v1 • v2 ↪→ e2, then e1 = e2.

• If · ` v.l ⇒ A, v • l ↪→ e1 and v • l ↪→ e2, then e1 = e2.

Theorem 5.6 (Determinism). If · ` e ⇔ A, e 7−→ e1 and e 7−→ e2, then e1 = e2.
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v 7−→A v′ (Casting)

Ct-Int
A <: Int

i : A 7−→Int i : Int

Ct-Top
eAOd

v 7−→A 1 : AO

Ct-Arr
¬eDod E <: C → Do

(λx. e : A → B) : E 7−→(C→Do) (λx. e : A → Do) : (C → Do)

Ct-Rcd
¬eAOd v 7−→AO v′

{l = v} 7−→{l:AO} {l = v′}

Ct-Mrg-L
v1 7−→AO v′1

v1 , , v2 7−→AO v′1

Ct-Mrg-R
v2 7−→AO v′2

v1 , , v2 7−→AO v′2

Ct-And
A1 ◁A▷A2 v 7−→A1 v1 v 7−→A2 v2

v 7−→A v1 , , v2

Figure 5.4: Casting (Disjointness)

(v • vl) ↪→ e (Applicative Dispatching)

App-TopLike
eAd

((p : A) • v) ↪→ 1 : tail A

App-Proj

({l = v} • l) ↪→ v

App-Lam
v 7−→A v′ ¬eDd

((λx. e : A → B) : C → D • v) ↪→ e[x 7→ v′] : D

App-Mrg-L
〈v2〉 � 〈vl〉 = . (v1 • vl) ↪→ e

(v1 , , v2 • vl) ↪→ e

App-Mrg-R
〈v1〉 � 〈vl〉 = . (v2 • vl) ↪→ e

(v1 , , v2 • vl) ↪→ e

App-Mrg-P
〈v1〉 � 〈vl〉 6= . 〈v2〉 � 〈vl〉 6= . (v1 • vl) ↪→ e1 (v2 • vl) ↪→ e2

(v1 , , v2 • vl) ↪→ e1 , , e2

Figure 5.5: Applicative Dispatching (Disjointness)
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5 A Calculus with A Disjoint Merge Operator

e 7−→ e′ (Small-Step Reduction)

Step-Int-Ann

i 7−→ i : Int

Step-Arr-Ann

λx. e : A → B 7−→ (λx. e : A → B) : A → B

Step-Pv-Split
A1 ◁A▷A2

p : A 7−→ p : A1 , , p : A2

Step-Papp
(v1 • v2) ↪→ e

v1 v2 7−→ e

Step-Pproj
(v • l) ↪→ v′

v.l 7−→ v′

Step-Val-Ann
v 7−→A v′

v : A 7−→ v′

Step-App-L
e1 7−→ e′1

e1 e2 7−→ e′1 e2

Step-App-R
e2 7−→ e′2

v1 e2 7−→ v1 e
′
2

Step-Mrg-Parallel
e1 7−→ e′1 e2 7−→ e′2

e1 , , e2 7−→ e′1 , , e
′
2

Step-Mrg-L
e1 7−→ e′1

e1 , , v2 7−→ e′1 , , v2

Step-Mrg-R
e2 7−→ e′2

v1 , , e2 7−→ v1 , , e
′
2

Step-Ann
¬e ∈ p e 7−→ e′

e : A 7−→ e′ : A

Step-Rcd
e 7−→ e′

{l = e} 7−→ {l = e′}

Step-Prj
e 7−→ e′

e.l 7−→ e′.l

Figure 5.6: Operational Semantics (Disjointness)
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6 Implementation

This chapter gives an interpreter implementation of our calculus in Chapter 4. Unlike tradi-
tional approaches of using datatypes to represent the types, expressions etc., we take a more
direct and relatively simple representation: symbols. All the algorithms are computed via
symbolic pattern matching and dispatching. This approach saves us from writing a parser of
our languages since we adopt S-expressions [McCarthy 1960] and treat this implementation
as a dialect of Lisp, though statically typed.

6.1 Statics

We start with the definition of types and terms and then introduce the subtyping algorithm.
In the last part, we implement type inference and type checking.

6.1.1 Types and Terms

First, we define our syntax as several contracts (aka. predicates). For type?, we have basic
types (integer, floating number, boolean, top) and compound types (function types, inter-
section types and record types). For simplicity, the label is just interpreted as a number.

(define label? number?)
(define (type? t)
(match t
['int #t]
['float #t]
['bool #t]
['top #t]
[`(→ ,(? type?) ,(? type?)) #t]
[`(& ,(? type?) ,(? type?)) #t]
[`(* ,(? label?) ,(? type?)) #t]
[_ #f]))

For terms, we have variables, numbers, booleans, lambda abstractions, function applications,
merges (e.g., (m e1 e2)), annotated terms, records (e.g., (~> l e)) and record projections
(e.g., (<~ e l)) and primitive additions (e.g., int+, flo+).
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(define (expr? e)
(match e
[(? symbol?) #t]
[(? exact-integer?) #t]
[(? flonum?) #t]
['#t #t]
['#f #t]
[`(λ (,(? symbol?) : ,(? type?)) ,(? expr?) ,(? type?)) #t]
[`(,(? expr?) ,(? expr?)) #t]
[`(m ,(? expr?) ,(? expr?)) #t]
[`(: ,(? expr?) ,(? type?)) #t]
[`(~> ,(? label?) ,(? expr?)) #t]
[`(<~ ,(? expr?) ,(? label?)) #t]
[`(int+ ,(? expr?) ,(? expr?)) #t]
[`(flo+ ,(? expr?) ,(? expr?)) #t]
[_ #f]))

6.1.2 Subtyping

After the syntax is settled, we nowdefine our subtyping and applicative subtyping algorithms.
We first define the ordinary judgment as a contract and let splittable types be a function that
accepts a type and returns a pair of types. The contract of the split function describes that it
accepts a non-ordinary type and returns two types.

(define/contract (ord? t)
(→ type? boolean?)
(match t
['int #t]
['float #t]
['bool #t]
['top #t]
[`(→ ,_ ,B) (ord? B)]
[`(* ,_ ,A) (ord? A)]
[_ #f]))

(define/contract (spl t)
(→ (and/c type? (not/c ord?)) (cons/c type? type?))
(match t
[`(→ ,A ,B) (let ([Bs (spl B)])

`((→ ,A ,(car Bs)) . (→ ,A ,(cdr Bs))))]
[`(* ,l ,A) (let ([As (spl A)])
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6.1 Statics

`((* ,l ,(car As)) . (* ,l ,(cdr As))))]
[`(& ,A ,B) `(,A . ,B)]
[_ (error "fail to split" t)]))

The subtyping relation is modelled as a function that takes two types as inputs and returns a
boolean specifying if two types have the subtyping relation. The first four branches deal with
basic types and top types. For compound types, we check whether they are ordinary types
and then dispatch them into different options. Simply speaking, we keep splitting types on
the right side until they are ordinary; then we apply rules for arrows and records to them.

(define/contract (sub? t1 t2)
(→ type? type? boolean?)
(match* (t1 t2)
[('int 'int) #t]
[('float 'float) #t]
[('bool 'bool) #t]
[(_ 'top) #t]
[(`(→ ,A ,B) `(→ ,C ,(? ord? D))) (and (sub? C A) (sub? B D))]
[(`(* ,l ,A) `(* ,l ,(? ord? B))) (sub? A B)]
[(A (? (not/c ord?) B)) (let ([Bs (spl B)])

(and (sub? A (car Bs)) (sub? A (cdr Bs))))]
[(`(& ,A ,B) (? ord? C)) (or (sub? A C) (sub? B C))]
[(_ _) #f]))

6.1.3 Applicative Subtyipng

Our selector types are types or labels, and we define them by combining contracts types?
and label?. For output types to denote the success or failure, we combine type? and fail?.
There is only one inhabitant (#f) for the contract fail?.

The composition operator is simply implemented as a function that takes two outputs and
returns an output type. asub is the function for applicative subtyping; it takes a regular type
and a selector type, then returns the result type if success; otherwise it returns #f as a failure.

(define selector? (or/c type? label?))
(define (fail? t) (equal? t #f))
(define output? (or/c type? fail?))

(define/contract (comb o1 o2)
(→ output? output? output?)
(match* (o1 o2)
[((? type? A1) (? type? A2)) `(& ,A1 ,A2)]
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[((? fail?) (? type? A)) A]
[((? type? A) (? fail?)) A]
[((? fail?) (? fail?)) #f]))

(define/contract (asub t s)
(→ type? selector? output?)
(match* (t s)
[(`(→ ,A1 ,A2) (? type? B)) #:when (sub? B A1) A2]
[(`(→ ,A1 ,A2) (? type? B)) #f]
[(`(* ,l1 ,A) (? label? l2)) #:when (equal? l1 l2) A]
[(`(* ,l1 ,A) (? label? l2)) #f]
[(`(& ,A1 ,A2) S) (comb (asub A1 S) (asub A2 S))]
[(_ _) #f]))

6.1.4 Typing

The bidirectional typing is implemented as two functions: infer and check. The function
infer takes a term and an environment as inputs and returns a type as an output. That is to
say, the type of it is (→ expr? list? type?). The function check takes three arguments: a
term, a variable environment and a type that needs to be checked. It returns a boolean value
specifying whether the check success.

(define/contract (check e t env)
(→ expr? type? list? boolean?)
(let ([A (infer e env)]) (sub? A t)))

(define/contract (infer e env)
(→ expr? list? type?)
(match e
[(? exact-integer?) 'int]
[(? flonum?) 'float]
['#t 'bool]
['#f 'bool]
[(? symbol?) (lookup env e)]
[`(λ (,x : ,A) ,e ,B) #:when (check e B (cons `(,x ,A) env))

`(→ ,A ,B)]
[`(~> ,l ,e) `(* ,l ,(infer e env))]
[`(: ,e ,A) #:when (check e A env) A]
[`(,e1 ,e2) (let ([A (infer e1 env)] [B (infer e2 env)])

(or (asub A B) (error "app")))]
[`(<~ ,e ,l) (let ([A (infer e env)])

(or (asub A l) (error "proj")))]
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6.2 Dynamics

[`(m ,e1 ,e2) (let ([A (infer e1 env)] [B (infer e2 env)])
`(& ,A ,B))]

[`(int+ ,e1 ,e2) #:when (and (check e1 'int env)
(check e2 'int env)) 'int]

[`(flo+ ,e1 ,e2) #:when (and (check e1 'float env)
(check e2 'float env)) 'float]

[_ (error "cannot infer the type of" e "under" env)]))

6.2 Dynamics

For the dynamic semantics, we first define two contracts: raw value and value. Thenwe spec-
ify that a casting function accepts a value and a type, it returns the result value if successful,
otherwise it fails. The function disp implements our applicative dispatching; it accepts a
value and a selector and returns an expression.

(define/contract (pvalue? e) ...)
(define/contract (value? e) ...)
(define/contract (cast e t)
(→ value? type? (or/c value? fail?))
(match* (e t)
[(`(: ,n ,A) 'int) #:when (sub? A 'int) `(: ,n int)]
[(`(: ,n ,A) 'float) #:when (sub? A 'float) `(: ,n float)]
[(`(: #t ,A) 'bool) #:when (sub? A 'bool) '(: #t bool)]
[(`(: #f ,A) 'bool) #:when (sub? A 'bool) '(: #f bool)]
[(v 'top) '(: 1 top)]
[(`(: (λ (,x : ,A) ,e ,B) ,E) `(→ ,C ,(? ord? D)))
#:when (sub? E `(→ ,C ,D)) `(: (λ (,x : ,A) ,e ,D) (→ ,C ,D))]
[(`(~> ,l ,v) `(* ,l ,(? ord? A))) `(~> ,l ,(cast v A))]
[(`(m ,v1 ,v2) (? ord? A)) #:when (cast v1 A) (cast v1 A)]
[(`(m ,v1 ,v2) (? ord? A)) #:when (cast v2 A) (cast v2 A)]
[(v (? (not/c ord?) A))
(let ([As (split A)]) `(m ,(cast v (car As)) ,(cast v (cadr As))))]

[(_ _) #f]))

(define/contract (disp v vl)
(→ value? (or/c label? value?) expr?)
(match v
[`(: (λ (,x : ,A) ,e ,B) (→ ,C ,D))

`(: ,(subst e x (cast vl A)) ,D)]
[`(~> ,l ,v) #:when (equal? l vl) v]
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[`(m ,v1 ,v2) #:when (not (asub (pt v2) (at vl))) (disp v1 vl)]
[`(m ,v1 ,v2) #:when (not (asub (pt v1) (at vl))) (disp v2 vl)]
[`(m ,v1 ,v2) #:when (and (asub (pt v1) (at vl))

(asub (pt v2) (at vl)))
`(m ,(disp v1 vl) ,(disp v2 vl))]))

To evaluate the term, we choose the small-step approach. First, we develop a step func-
tion which models our operational semantics. Then the eval function evaluates the terms
multiple times until they have a canonical form.

(define/contract (step e)
(→ expr? expr?)
(match e
[(? exact-integer? n) `(: ,n int)]
[(? flonum? n) `(: ,n float)]
['#t '(: #t bool)]
['#f '(: #f bool)]
[`(λ (,x : ,A) ,e ,B) `(: (λ (,x : ,A) ,e ,B) (→ ,A ,B))]
[`(: ,(? pvalue? p) ,(? (not/c ord?) A)) (let ([As (spl A)])

`(m (: ,p ,(car As)) (: ,p ,(cdr As))))]
[`(<~ ,(? value? v) ,(? label? l)) (disp v l)]
[`(<~ ,(? (not/c value?) e) ,(? label? l)) `(<~ ,(step e) ,l)]
[`(~> ,(? label? l) ,(? (not/c value?) e)) `(~> ,l ,(step e))]
[`(,(? value? v) ,(? value? vl)) (disp v vl)]
[`(: ,(? value? v) ,A) (cast v A)]
[`(: ,(? (not/c pvalue?) e) ,A) `(: ,(step e) ,A)]
[`(,(? (not/c value?) e1) ,e2) `(,(step e1) ,e2)]
[`(,(? value? v) ,e2) `(,v ,(step e2))]
[`(m ,e1 ,(? value? v)) `(m ,(step e1) ,v)]
[`(m ,(? value? v) ,e2) `(m ,v ,(step e2))]
[`(m ,e1 ,e2) `(m ,(step e1) ,(step e2))]
[`(int+ ,(? (not/c value?) e1) ,e2) `(int+ ,(step e1) ,e2)]
[`(int+ ,(? value? v) ,(? (not/c value?) e2)) `(int+ ,v ,(step e2))]
[`(int+ ,(? value? v1) ,(? value? v2)) (plus v1 v2)]
[`(flo+ ,(? (not/c value?) e1) ,e2) `(flo+ ,(step e1) ,e2)]
[`(flo+ ,(? value? v) ,(? (not/c value?) e2)) `(flo+ ,v ,(step e2))]
[`(flo+ ,(? value? v1) ,(? value? v2)) (plus v1 v2)]))

(define/contract (eval e)
(→ any/c value?)
(let ([e (desugar e)])
(when (infer e '()) (if (value? e) e (eval (step e))))))
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6.3 Tour

6.3 Tour

This section gives a tour of our language and each line is documented in the comments.

;; simple literal
42 42.2 #t #f

;; λ abstraction
(λ (x : int) x int)

;; function application
((λ (x : int) x int) 1)

;; record creation, for simplicity, we use numbers to represent the label
(~> 42 #t)

;; record projection
(<~ (~> 42 #t)

42)

;; merge two values
(m 1 #t)

;; merge two functions
(m (λ (x : int) x int)

(λ (x : bool) x bool))

;; merged function can be applied
((m (λ (x : int) x int)

(λ (x : bool) x bool))
1)

;; merge two records
(m (~> 1 #t)

(~> 2 #f))

;; merged records can be selected by label
(<~ (m (~> 1 #t)

(~> 2 #f))
1)

;; merged arguments can also be automatically selected
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((λ (x : int) x int)
(m 1 #t))

;; an expression can be annotated
(: (λ (x : int) x int)

(→ int int))

;; annotate a "value" can force a downcast/upcast
(: (: 1 int)

(& int int)) ;; ⇒ duplicate a number

(: (: (λ (x : int) x int) (→ int int))
(& (→ int int)

(→ int int))) ;; ⇒ duplicate a function

(: (m (λ (x : int) x int)
(λ (x : bool) x bool))

(→ bool bool)) ;; ⇒ downcast to a boolean identity function

;; use int+ to add integers
(int+ 1 3)
;; use flo+ to add floats
(flo+ 1.0 2.1)

((λ (x : int) (int+ x x) int) 1)
((λ (x : float) (flo+ x x) float) 1.1)

;; overload int+ and flo+ to create a polymorphic "double" function
((m (λ (x : int) (int+ x x) int)

(λ (x : float) (flo+ x x) float))
1)

;; variadic version of merge operator
(<~ (M (~> 1 #t)

(~> 2 #f)
(~> 3 #t))

2)

;; another syntactic sugar for records
(R (1 #t) (43 #f) (99 #t))
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7 RelatedWork

7.1 Intersection Types, Merges and Overloading

Forsythe, introduced by Reynolds [1988], has a restricted merge operator and its coherent
semantics is formally proven. However, it does not account for overloaded functions since
multiple functions are forbidden by merges. Pierce [1991] introduced a glue construct in
his calculus F∧ as a language extension to support user-defined overloading and the types
of overloaded functions are also modelled as intersection types. However, the metatheory of
the glue operator has not been studied.

Directly computing the type with arguments and functions in the application rule is not
new. Originally it appears as the function apptype in the work of Freeman and Pfenning
[1991]. The idea of apptype is simple: if the function has the type (A1 → B1) & (A2 →
B2) & ... & (An → Bn) and the argument has the type A, the result type will be derived.

&Bi
i|A≤Ai

The algorithm is based on the refinement types which are rewritten into union normal form
and intersection normal form, where the distributivity of intersection types will not appear.
Also, the apptype algorithm is integrated into a type inference algorithm, the correctness
of the algorithm is implied by the correctness of the inference and corresponding dynamic
semantics is not designed.

Dunfield’s calculus [Dunfield 2014] is powerful enough to encode overloaded functions
and record projection. Unlike our calculi, it does not support distributivity and nested com-
position. This means that overloaded functions do not interact nicely with currying. For ex-
ample, to program pshow unit 1 in her calculus, we should write ((pshow unit) : Int →
Bool) 1. As acknowledged by Dunfield, the semantics is not deterministic. This is similar
to our first calculus in Chapter 4. To restrict the power of the merge operator and enable
determinism, a disjointness restriction on merges has been proposed [Oliveira et al. 2016].
Closest to our work is the λ+

i calculus [Huang et al. 2021], which is a deterministic calculus
with intersection types and a disjoint merge operator. There are two major differences be-
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tween our work and λ+
i . (1) Our first calculus utilizes an unrestricted merge operator, which

allows any functions and records to be merged. (2) Our second calculus can be viewed as
a variant of λ+

i that employs applicative subtyping and thus avoids many unnecessary an-
notations that are required in λ+

i since function overloading and record projection are not
directly supported in λ+

i . In λ+
i , we would need a term with an explicit type annotation in-

stead: ((succ,,not) : Int → Int) 1. The rigid form of applications and projections in
λ+
i prevents expressions such as (succ,,not) 1, which are not well-typed in λ+

i .

In recent work, [Rioux et al. 2022] proposed a calculus with a disjoint merge operator that
deals with union types and overloading. This is achieved with two more fine-grained dis-
jointness relations called mergeability and distinguishability. Similarly to our calculus, they
consider an expressive type-level dispatch relation that plays the same role as applicative sub-
typing in our calculus. Such dispatching relation supports union types, unlike our calculus.
In terms of the operational semantics, there are significant differences between our work and
Rioux et al.’s work. While their semantics still employs types at runtime, there is no casting
relation. Instead there are patterns and co-patterns, which enforce runtime coercions via
η-expansion. While overloading is supported, the disjointness relations are still not flexible
enough to support return type overloading.

7.2 λ&-Calculus

Castagna et al. [1995] gave a formalisation to calculus for overloaded functions with subtyp-
ing. In his calculus, overloaded functions are defined as &-terms, and their application is
specially treated as a new application term since they adopt two different mechanisms. The
syntax of his calculus is defined as follows. The most interesting part is highlighted where
M&V M is used for adding new instances for overloaded functions andM •M is used for
overloaded applications.

Terms M ::= xV | λxV . M | M ·M | ε | M&V M | M •M

The types of overloaded functions are a finite list of arrow types with a consistency restric-
tion.

PreTypes V ::= A | V → V | {V ′
1 → V ′′

1 , ..., V
′
n → V ′′

n }
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For typing rules, the new introduction rule and elimination rule are added.

{}Intro
` M : W1 ≤ {Ui → Vi}i≤(n−1) ` N : W2 ≤ Un → Vn

` (M&{Ui→Vi}i≤nN) : {Ui → Vi}i≤n

{}Elim
` M : {Ui → Vi}i∈I ` N : U Uj = mini∈I{Ui|U ≤ Ui}

` M •N : Vj

Unlike our strategy, all the fitting branches will be accepted or rejected when ambiguities
are detected. This typing rule will infer the result type of the “best-match” branch and apply
that branch at runtime. The semantics is type-dependent, and overloaded applications rely
on the runtime types, which is similar to our TDOS approach.
The confluence and subject-reduction are proved in his calculus. Differently to our ap-

proach, the nested composition is not supported in his calculus. Moreover, only one branch
can be selected in the overloaded application, thus terms like succ,,intToDigit are rejected,
forbidding currying on overloaded functions. In his work, records are encoded by lambda
functions, and multi-field records are overloaded functions.

7.3 Type Classes

Type classes [Wadler and Blott 1989] enable ad-hoc polymorphism by adding constraints to
polymorphic types, which is completely different from our approach. The type signature of
overloaded functions is defined in a class, which is an interface that states the types of over-
loaded functions. We can simply add the implementation of overloaded functions by writing
instances. The overloaded application will be made by instance resolution. The expressive-
ness of type classes is more powerful than our approach. For example,

show :: Show a ⇒ a → String
show [1,2] -- evaluated to "[1,2]"

It also works fine with the curried overloading. For example, addition can be defined as 1

class Addable a b c where
add :: a → b → c

Each instance will create an instance of overloaded function add,

instance Addable Int Int Int where
add x y = x + y

1with MultiParamTypeClasses, FlexibleContexts extensions
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instance Addable Int Bool Int where
add x y = if y then x + 1 else x

curried :: Addable Int b c ⇒ b → c
curried = add (1 :: Int)

One of the interesting ways to compare type classes with our approach is nested composition.
For example, if we abstract show function in a thunk, the class Show will appear at the most
left. In the view of the distributivity, the result pshow () and pshow () 1 illustrate that the
class Show can distribute over the each instance of pshow.

pshow :: Show a ⇒ p → a → String
pshow = \x → show

Another point to be noted is that constrained by the HM type system, type classes in Haskell
do not support subtyping.

7.4 Semantic Subtyping

Semantic subtyping [Frisch et al. 2008] takes a different direction to type overloaded func-
tions with intersection types and union types. In semantic subtyping, the semantics of types
is set-theoretic, and then subtyping relations are derived from the semantics. The type sys-
tem features intersection types, union types and negation types. Overloaded functions can
be defined by a typecase primitive which is similar to the elimination of union types. For
example, the type of show is Int | Bool → String
The typing for application is standard in their calculi [Castagna et al. 2022], and different

implementations are dispatched by the explicit type given by the programmer. For example,
the function show is defined as:

let show = fun x → if x is Int then showInt x else showBool x

Also, succ,,not has the type (Int → Int) & (Bool → Bool).

let succnot = fun x → if x is Int then succ x else not x

The approach to semantic subtyping of overloaded functions is different from ours since in
our calculi:

• only intersection types are used to represent types of overloaded functions; and

• overloaded functions can be introduced by simply merging.
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7.5 Multimethods andMultiple Dispatching

Calculi with subtyping (e.g., Featherweight Java [Igarashi et al. 2001]) often feature dispatch-
ing since types of termswill becomemore precise during the reduction. The function call will
be resolved by the actual types of arguments (referred to as runtime types). Multimethods
describe that the dispatching strategy is based on multiple arguments. It has already been
adopted by many languages, including Common Lisp Object System (CLOS) [DeMichiel
and Gabriel 1987], Dylan [Shalit 1996], Julia [Bezanson et al. 2017] etc.
Zappa Nardelli et al. [2018] formalised Julia’s multiple dispatching by an expressive sub-

typing relation. Themost specificmethod (function)will be picked based on the type of argu-
ments. Union types and parametric constructors have been used in their approach, however
intersection types are not considered.

In multimethods, arguments are resolved at once and the “best-match” branch will be
selected according to specializers. However, in our calculi, we resolve arguments one by one
and all branches that can apply are selected and then results will be combined. The resolution
in dynamic semantics is based on annotations.
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8 Conclusion and FutureWork

8.1 Conclusion

In this thesis, we proposed applicative subtyping, a novel subtyping algorithm to infer the
return types of application and projection. We also designed its corresponding judgment
applicative dispatching in the dynamic semantics. Together these features enable expressive
calculi with a merge operator. We present a type sound calculus that supports all features
but is non-deterministic and a second deterministic calculus with a disjointness restriction
supporting all features except for some forms of overloading.

8.2 FutureWork

We give some directions for future work below.

8.2.1 Application Mode

Though applicative subtyping is a rather elegant solution to enable the overloaded application,
record projection and nested composition, application mode still has its advantages: it fits
into the setting of ordinary overloading and has the potential for better type inference and
best-match strategy, which will be expanded in later paragraphs.
We discussed some design challenges in Section 3.5. The ideal solution is to adopt an

uncommon evaluation order and to reduce function application into the canonical form like
f a1 a2...an. The syntax of f and ai should be defined in a delicate way.

Potential to reduce annotations In the calculi shown, our lambda syntax is fully an-
notated and rather rigid to write, abandoning the major advantages of bidirectional typing.
As discussed in Section 3.5, we can utilise the application mode and allow us to write the
expression like (λx. x, , λx. (x+1)) 1. The future work is on how to design a corresponding
dynamic semantics for application mode and improve the typing rule to allow the unanno-
tated syntax.
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8.2.2 Bidirectional Typing

Since our approach infers both the types of function and arguments, which is different from
the traditional bidirectional typing for the application case.

Γ ` e1 ⇒ A Γ ` e2 ⇒ B A � B = C

Γ ` e1 e2 ⇒ C
T-App

Γ ` e1 ⇒ A → B Γ ` e2 ⇐ A

Γ ` e1 e2 ⇒ B
T-App

This approach sacrifices the possibility of writing a smarter high-order function application.
For example map (λx. true) [1, 2] (notice that the lambda function is not annotated).

map : (Int → Bool) → [Int] → [Bool]

In our calculi, we need to write map (λx. true : Int → Bool) [1, 2]where the annotation is
not necessary from intuition. A line of future work is on how to retain the advantage of check
mode and also provide the information of arguments to help infer the application term.

8.2.3 Ambiuguities

In Chapter 3, we discussed the ambiguities and provided a rather naive solution to prevent
those. However, whether overloding semantics or disjoint intersection types will reject the
expressions we consider valid and unambiguous.

Future work includes finding a design that enables overloading while preserving deter-
minism. There are several places to do this. One is that we can extend the disjointness spec-
ification and adapt it in case of overloading. Another is we add the extra condition check in
applicative subtyping. For the latter, we gave several design choices, though none of them
serves as a perfect design where ambiguous cases are forbidden while all applicable cases can
be retained.

8.2.4 Best-Match Approach

Multimethods are related to our work and based on the precise runtime types. Usually, mul-
timethods adopt a best-match approach, and so is the work of Castagna et al. [1995]. In our
calculi shown, all the possible branches will be selected. However, with application mode,
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8.2 Future Work

after all arguments are collected, we have the potential to model the “best-match” approach
and also reuse the same approach in the dynamic semantics.

8.2.5 Disjoint Polymorphism

The combination of disjoint intersection types, merge operator and parametric polymor-
phism empowers the disjoint polymorphism [Alpuim et al. 2017], which lets programmers
specify the constraints of the type variables. Disjoint polymorphism can encode many valu-
able features: dynamic mixins, polymorphic records, row and bounded polymorphism [Xie
et al. 2020]. In the future, we are interested in investigating how to apply disjoint polymor-
phism in our calculi.

8.2.6 Compile to Racket

We give an interpreter implementation in Chapter 6, which heavily relies on the Racket’s
runtime contract checking. This approach differs from practical languages in two aspects:

• Type checking should be statically done at compile time.

• Overloading application and record projection should be statically resolved.

In the current implementation, we only utiliseminimal parts of the functionalities of Racket’s
macro system and delegate the parsing and evaluation to the functions. We can refer to
sophisticated techniques [Chang et al. 2017; King 2020] to employ the macro system to deal
with type checking and overloading resolution. However, they all do not account for the
elaboration semantics of the language. The future work is on investigating Racket’s macro
system to deal with elaboration and building the compiler implmentation of our languages.
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