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Bidirectional typing is a simple, lightweight approach to type inference that propagates known type information

during typing, and can scale up to many different type systems and features. It typically only requires a

reasonable amount of annotations and eliminates the need for many obvious annotations. Nonetheless the

power of inference is still limited, and complications arise in the presence of more complex features.

In this paper we present a generalization of bidirectional typing called contextual typing. In contextual

typing not only known type information is propagated during typing, but also other known information about

the surrounding context of a term. This information can be of various forms, such as other terms or record

labels. Due to this richer notion of contextual information, less annotations are needed, while the approach

remains lightweight and scalable. For type systems with subtyping, contextual typing subsumption is also

more expressive than subsumption with bidirectional typing, since partially known contextual information

can be exploited. To aid specifying type systems with contextual typing, we introduce Quantitative Type
Assignment Systems (QTASs). A QTAS quantifies the amount of type information that a term needs in order

to type check using counters. Thus, a counter in a QTAS generalizes modes in traditional bidirectional typing,

which can only model an all (checking mode) or nothing (inference mode) approach. QTASs enable precise

guidelines for annotatability of contextual type systems formalized as a theorem. We illustrate contextual

typing first on a simply typed lambda calculus, and then on a richer calculus with subtyping, intersection

types, records and overloading. All the metatheory is formalized in the Agda theorem prover.
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1 Introduction
Bidirectional typing is a technique for the design and implementation of type systems. It has been

popularized by Pierce and Turner [2000], and surveyed by Dunfield and Krishnaswami [2021].

The key idea is to have two modes for typing: inference and checking, which describe local type

information propagation. The type inferred from a term can be further used to check other terms.

In other words, the type information can be propagated from one term to its neighboring terms.

Bidirectional typing has proved useful for the design of complex type systems with a variety of

features, including subtyping [Davies and Pfenning 2000; Dunfield and Pfenning 2004; Pierce and

Turner 2000], polymorphism [Dunfield and Krishnaswami 2013; Zhao et al. 2019] and dependent

types [Asperti et al. 2012; Coquand 1996; Löh et al. 2010; Norell 2007; Xi and Pfenning 1999].

Bidirectional typing eliminates the need for many obvious annotations, but the power of infer-

ence is still limited. Standard bidirectional typing is an all-or-nothing approach: either all type
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information is known and we can type check a term; or no type information is known and we can

infer the type of a term. However, several researchers [Bierman et al. 2014; Norell 2007; Odersky

et al. 2001; Polikarpova et al. 2016; Pottier and Régis-Gianas 2006; Xie and Oliveira 2018] observed

that partially known type information is helpful to improve inference. In some of those works, a

notion that naturally arises is some form of contextual type information that aids type inference.

In this paper we present a generalization of bidirectional typing called contextual typing. Con-
textual typing builds on the idea that partially known type information is helpful for inference,

and further extends it. In contextual typing not only known type information is propagated during

typing, but also other (partially) known information about the surrounding context of a term. This

information can be of various forms, such as other terms or record labels. For instance, for terms

representing functions, it could be the terms (arguments) that the function is being applied to.

Conversely, for records, it could be the information about labels that are being projected. Due to

this richer notion of contextual information, fewer annotations are needed, while the approach

remains lightweight and scalable. Contextual typing retains the lightweightness of bidirectional

typing, by simply propagating some information from some terms into some other neighboring

terms. No advanced mechanisms, such as unification variables, are needed for contextual typing.

For type systems with subtyping, contextual typing subsumption is also more expressive than

bidirectional typing subsumption. Unlike the standard bidirectional subsumption rule, which

requires full type information for the supertype of a term, contextual typing subsumption can

be used when only partial contextual information is known. Contextual subsumption is helpful

to eliminate some complications that arise when applying bidirectional typing to type systems

with subtyping. In particular, in various type systems with subtyping – including features like

intersection types and/or union types [Davies and Pfenning 2000; Huang et al. 2021; Rioux et al.

2023], records [Xue et al. 2022] or polymorphism [Dunfield and Krishnaswami 2013; Zhao et al.

2019] – specialized auxiliary relations are needed in other parts of the typing relation to compensate

for the weak form of bidirectional subsumption. Because contextual typing has a more powerful

form of subsumption, it can avoid many such auxiliary relations. Thus we can have a typing relation

where all uses of subtyping are delegated to the subsumption rule, and dealt with in a single place.

To specify type systems with contextual typing we introduce Quantitative Type Assignment

Systems (QTASs). QTASs serve as an intermediate step in between traditional Type Assignment

Systems (TASs) and algorithmic formulations. Unlike type assignment systems, QTASs precisely

specify where type annotations are needed. Moreover, they quantify (and in some cases qualify) the

amount of type information that a term needs in order to type check via counters. Thus, the notion

of counters in a QTAS generalizes modes in traditional bidirectional typing from an all (checking

mode) or nothing (inference mode) approach, to a notion that quantifies the amount of needed type

information. With a QTAS it is possible to have precise guidelines for the annotatability of type

systems with contextual typing formalized as a theorem.

We illustrate the key ideas of contextual typing and propagation of partial contextual information

contextual typing first on a simplified setting based on the simply typed lambda calculus. In this

calculus, contextual information consists of known type information, and known arguments to

functions. Then we present a richer calculus with subtyping, intersection types, records and a

simple form of overloading. This calculus illustrates a more powerful form of subsumption provided

by contextual typing, and shows that we can have other forms of contextual information. In

particular, we use labels of records as contextual information to aid with the type inference of

record projections. For both calculi we prove several results, including soundness and completeness

between a QTAS and its algorithmic formulation, decidability of typing and/or subtyping, and

annotatability theorems. All the metatheory is formalized in the Agda theorem prover.

In summary, the contributions of this paper are:
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Contextual Typing 266:3

Γ ⊢ 𝑒 ⇔ 𝐴 (Under environment Γ, 𝑒 can infer (⇒) the type 𝐴 or check (⇐) against the type 𝐴.)

Γ ⊢ 𝑖 ⇐ Int
Lit

(𝑥 : 𝐴) ∈ Γ

Γ ⊢ 𝑥 ⇒ 𝐴
Var

Γ ⊢ 𝑒 ⇒ 𝐴 𝐴 = 𝐵

Γ ⊢ 𝑒 ⇐ 𝐵
Sub

Γ ⊢ 𝑒 ⇐ 𝐴

Γ ⊢ (𝑒 : 𝐴) ⇒ 𝐴
Anno

Γ, 𝑥 : 𝐴 ⊢ 𝑒 ⇐ 𝐵

Γ ⊢ (𝜆𝑥 . 𝑒) ⇐ 𝐴 → 𝐵
Lam

Γ ⊢ 𝑒1 ⇒ 𝐴 → 𝐵 Γ ⊢ 𝑒2 ⇐ 𝐴

Γ ⊢ 𝑒1 𝑒2 ⇒ 𝐵
App

Fig. 1. Bidirectional typing of STLC. Note that⇔ is a metavariable defined as:⇔ ::= ⇐ | ⇒.

• Contextual typing: A generalization of bidirectional typing, which retains its lightweight-

ness, and enables programs to type check with fewer annotations.

• Quantitative type assignment systems. A variant of type assignment systems, which spec-

ifies the amount of information needed to type check terms, and enables precise annotatability

guidelines to be formalized as theorems.

• A teleportation-based approach for algorithmic typing. To implement a QTAS, we

employ a typing relation that, in addition to a type environment, is also parametrized by a

surrounding context. The surrounding context tracks known contextual type information,

and is used to aid with the propagation (or teleportation) of information across the AST.

• The metatheory for contextual typing. All the calculi and proofs in this paper are formal-

ized in Agda and they are available in the companion artifact [Xue and Oliveira 2024].

• A contextual intersection type system with subtyping, records and overloading,
illustrating how contextual typing scales up to subtyping and some common features.

2 Bidirectional Typing: Some Variants and Limitations
In this section we first introduce a standard formulation of bidirectional typing [Dunfield and

Krishnaswami 2021; Pierce and Turner 2000], and an alternative bidirectional approach called let
arguments go first [Xie and Oliveira 2018]. We then discuss limitations of both forms of bidirectional

typing, providing us with the motivation for the contextual typing approach.

2.1 Bidirectional Typing
Bidirectional STLC. To illustrate bidirectional typing, we use the variant of the Simply Typed

Lambda Calculus (STLC) by Dunfield and Krishnaswami as an example in Fig. 1. The original

calculus uses unit and unit types, which we replace by integers and integer types. This calculus is

designed based on a design recipe by Dunfield and Pfenning [2004], called the Pfenning recipe. This
recipe gives a guideline on how to bidirectionalize type assignment systems. Intuitively, we first find

the principal judgment and follow the rules: introduction forms check types, and elimination forms

infer types. The Lit and Var rules are two base rules: 𝑖 can check against the Int type and variable
𝑥 can infer the type 𝐴 by looking up the typing environment Γ. The checking rule for integers

strictly follows the Pfenning recipe. The subsumption rule Sub switches from checking to inference

mode by comparing the type equality between the inferred and the checked types. The annotation

rule Anno infers the type 𝐴 from the annotation and uses it to check the term 𝑒 . In the Lam rule, the

lambda term 𝜆𝑥 . 𝑒 checks against a function type 𝐴 → 𝐵, and the output type 𝐵 will be used to

check the body 𝑒 in an extended environment. The application rule App is the most interesting one.

In order to infer the type of the application, we first infer 𝑒1’s type and obtain the function type,

then use its input type 𝐴 to check the argument 𝑒2 and use its output type 𝐵 as the inference result

of the application. For example, we can infer the type of ((𝜆𝑓 . 𝑓 1) : (𝐼 → 𝐼 ) → 𝐼 ) (𝜆𝑥. 𝑥), where
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266:4 Xu Xue and Bruno C. d. S. Oliveira

the annotated lambda expecting a function 𝑓 is applied to a raw lambda (𝐼 stands for Int).

. . .

Γ ⊢ (𝜆𝑓 . 𝑓 1) : (𝐼 → 𝐼 ) → 𝐼 ⇒ (𝐼 → 𝐼 ) → 𝐼
Anno

. . .

Γ ⊢ 𝜆𝑥 . 𝑥 ⇐ 𝐼 → 𝐼
Lam

Γ ⊢ ((𝜆𝑓 . 𝑓 1) : (𝐼 → 𝐼 ) → 𝐼 ) (𝜆𝑥. 𝑥) ⇒ 𝐼
App

The derivation infers a function type (𝐼 → 𝐼 ) → 𝐼 . The input type 𝐼 → 𝐼 is used to check the

argument 𝜆𝑥. 𝑥 , and the output type 𝐼 is used as the inference result of the application.

Mode-correctness. The possibility of using two modes for typing brings up the question of when

to use one mode or the other in both the premises and the conclusions. The choices in Fig. 1 are not

unique, and there are several alternative ways to use modes, and still obtain a set of rules that can be

directly implemented as an algorithm. However, there are some choices for the usage of the modes

that are non-algorithmic. It is possible to design bidirectional rules where types need to be guessed.

Dunfield and Krishnaswami suggest the notion of mode-correctness as a criterion to ensure the

possibility of a bidirectional rule being implementable. Intuitively, we must avoid guessing a type

when we design bidirectional typing rules. When we check the term in the premise by some type,

the type must come from other synthesized terms or the checking type in the conclusion. When

we infer the type of the conclusion, the type should come from synthesized results of premises.

Dunfield and Krishnaswami identified four different mode-correct application rules. Among those

rules, App1 is the default choice for most bidirectional type systems.

Γ ⊢ 𝑒1 ⇒ 𝐴 → 𝐵 Γ ⊢ 𝑒2 ⇐ 𝐴

Γ ⊢ 𝑒1 𝑒2 ⇒ 𝐵
App1

Γ ⊢ 𝑒2 ⇒ 𝐴 Γ ⊢ 𝑒1 ⇐ 𝐴 → 𝐵

Γ ⊢ 𝑒1 𝑒2 ⇐ 𝐵
App2

Γ ⊢ 𝑒1 ⇒ 𝐴 → 𝐵 Γ ⊢ 𝑒2 ⇒ 𝐴

Γ ⊢ 𝑒1 𝑒2 ⇒ 𝐵
App3

Γ ⊢ 𝑒1 ⇒ 𝐴 → 𝐵 Γ ⊢ 𝑒2 ⇐ 𝐴

Γ ⊢ 𝑒1 𝑒2 ⇐ 𝐵
App4

Note that App3 and App4 can be subsumed by App1 with the subsumption rule, but not App2, which
does add expressive power to the type system. With App2, we can annotate the application and

utilize the inference result of arguments to further check the function. For example, ((𝜆𝑥 . 𝑥) 𝑧) : Int
cannot infer a type for a system with only App1, but type checks with App2 included.

. . .

Γ, 𝑧 : Int ⊢ 𝜆𝑥. 𝑥 ⇐ Int → Int
Lam

(𝑧 : Int) ∈ Γ, 𝑧 : Int

Γ, 𝑧 : Int ⊢ 𝑧 ⇒ Int
Var

Γ, 𝑧 : Int ⊢ (𝜆𝑥 . 𝑥) 𝑧 ⇐ Int
App2

Γ, 𝑧 : Int ⊢ ((𝜆𝑥. 𝑥) 𝑧) : Int ⇒ Int
Anno

Backtracking. Both App1 and App2 can type check terms that cannot be type checked with the

other rule alone. Thus, one may wonder if it is possible to have both rules in the same type system.

This is possible, and it can be implemented. However, simply adding the App2 rule comes at a cost:

we may need to backtrack when type checking an application. Since the two application rules do

not subsume each other we may need to try both rules for some applications in order to make type

checking work. For instance, when type checking expressions such as (((𝜆𝑓 . 𝑓 1) : (𝐼 → 𝐼 ) →
𝐼 ) (𝜆𝑥 . 𝑥)) : 𝐼 , we have to check the application with the type Int. In an implementation, we would

typically give less priority to the subsumption rule, in order to try other checking rules first. So,

the natural choice would be to try to use App2 first in this case. In this case App2 fails, then we

try the subsumption rule (Sub), and App1 succeeds. Since applications are pervasive in programs,

backtracking is problematic as it can introduce significant slowdowns in the type checker. Thus,

many implementations would avoid having the two rules and would typically prefer App1.
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Γ p Ψ ⊢ 𝑒 ⇒ 𝐴 (Under environment Γ and application stack Ψ, 𝑒 infers the type 𝐴)

Γ ⊢ 𝑖 ⇒ Int
Lit

(𝑥 : 𝐴) ∈ Γ

Γ ⊢ 𝑥 ⇒ 𝐴
Var

Γ, 𝑥 : 𝐴 p Ψ ⊢ 𝑒 ⇒ 𝐵

Γ p Ψ, 𝐴 ⊢ 𝜆𝑥 . 𝑒 ⇒ 𝐴 → 𝐵
Lam

Γ ⊢ 𝑒2 ⇒ 𝐴 Γ p Ψ, 𝐴 ⊢ 𝑒1 ⇒ 𝐴 → 𝐵

Γ p Ψ ⊢ 𝑒1 𝑒2 ⇒ 𝐵
AppS

Fig. 2. Let arguments go first, and the application mode for the STLC.

2.2 Let Arguments Go First
The two previous application rules are useful. However, there are programs that appear to have

enough contextual information, but do not type check by any of the mode-correct application rules

in bidirectional typing. For instance, to infer the type of (𝜆𝑥. 𝜆𝑦. 𝑥 +𝑦) 1 2, we can neither pick App1
nor App2. App1 cannot be applied because 𝜆𝑥 . 𝜆𝑦. 𝑥 + 𝑦 is a raw lambda that infers nothing. App2
cannot be applied because the application is not annotated thus we know nothing about the output

type. The approach with bidirectional typing is all-or-nothing and forbids partial type information

to be used (i.e. information about the inputs of functions only) to assist inference. Nonetheless,

type information about arguments can be used to infer the type of raw lambdas. This problem has

been observed by Xie and Oliveira [2018], and an alternative formulation of bidirectional typing

has been proposed. Instead of combining checking and inference modes, there is a combination of

application and inference modes. We present the STLC version of this approach in Fig. 2.

The key idea is to introduce an extra environment, called the application stack Ψ, which stores

contextual type information about the types of the arguments. The inference mode then becomes

a special case of the application mode when the stack is empty. In other words, Γ ⊢ 𝑒 ⇒ 𝐴 is

syntactic sugar that stands for Γ p . ⊢ 𝑒 ⇒ 𝐴. We omit the stack in rule Lit and Var to emphasize

the use of the inference mode in those rules. AppS and Lam are the two rules that interact with the

application stack. Rule AppS first infers the type 𝐴 from argument 𝑒2, and pushes the type 𝐴 into

the application stack of 𝑒1. With the help of an extended stack, 𝑒1 infers the function type 𝐴 → 𝐵,

and the output type is used as the inference result of the application term. In rule Lam, we pop one

type from the stack and use it as the type of bound variable, and then we further infer the body of

lambda. With the application mode, (𝜆𝑥 . 𝜆𝑦. 𝑥 + 𝑦) 1 2 is typeable as shown in the derivation:

. . .

Γ, 𝑥 : 𝐼 , 𝑦 : 𝐼 p . ⊢ 𝑥 + 𝑦 ⇒ 𝐼
AppS

Γ, 𝑥 : 𝐼 p 𝐼 ⊢ 𝜆𝑦. 𝑥 + 𝑦 ⇒ 𝐼 → 𝐼
Lam

Γ p 𝐼 , 𝐼 ⊢ 𝜆𝑥. 𝜆𝑦. 𝑥 + 𝑦 ⇒ 𝐼 → 𝐼 → 𝐼
Lam

Γ ⊢ 1 ⇒ 𝐼
Lit

Γ p 𝐼 ⊢ (𝜆𝑥. 𝜆𝑦. 𝑥 + 𝑦) 1 ⇒ 𝐼 → 𝐼
AppS

Γ ⊢ 2 ⇒ 𝐼
Lit

Γ p . ⊢ (𝜆𝑥 . 𝜆𝑦. 𝑥 + 𝑦) 1 2 ⇒ 𝐼
AppS

Let expressions as sugar. Standard bidirectional typing requires extra annotations on lambdas or

applications to type (𝜆𝑥. 𝑒2) 𝑒1. One virtue of the application mode is that let-expressions can be

simply encoded as syntactic sugar, without adding new constructs or new typing rules:

let 𝑥 = 𝑒1 in 𝑒2 ≜ (𝜆𝑥 . 𝑒2) 𝑒1

Limitations. Unfortunately, the AppS rule excludes cases that standard bidirectional typing can

accept. For example, the term ((𝜆𝑓 . 𝑓 1) : (𝐼 → 𝐼 ) → 𝐼 ) (𝜆𝑥. 𝑥), cannot be typed with the rules in

Fig 2. More interestingly, even though AppS appears to be related to App2, since both rules require

the inference of the argument, AppS cannot subsume App2 either. For example, AppS cannot type
check the expression ((𝜆𝑥 . 𝜆𝑦. 𝑦) 1) : 𝐼 → 𝐼 because it does not deal with annotated terms. Thus, it
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266:6 Xu Xue and Bruno C. d. S. Oliveira

cannot propagate the outer annotation to the subterms of the application. In essence, the power

of the checking mode is missing. As acknowledged by Xie and Oliveira, the application mode is

stronger than the inference mode, but weaker than the checking mode.

To combine the power of both approaches, one option discussed (but not formalized) by Xie and

Oliveira, is to have the inference mode, the application mode and the checking mode in a single

calculus. Then we could have a calculus that could type all the examples shown so far. Basically, this

calculus would include three modes (checking, inference and application) and also three application

rules: App1, App2 and AppS. We refer to the work of Xie and Oliveira for a more detailed discussion.

We give one example that showcases the power of the three different rules in combination.

let 𝑧 = 1 in (𝜆𝑓 . 𝑓 1 : ((𝐼 → 𝐼 ) → 𝐼 )) ((𝜆𝑥 . 𝜆𝑦. 𝑦) 𝑧)
AppS allows writing let-expressions as sugar to applications and without annotations (when the

arguments can be inferred). The rule App1 allows the annotation of functions to be used to check the
arguments. Moreover, App2 allows unannotated applications, such as (𝜆𝑥 . 𝜆𝑦. 𝑦) 𝑧, to be checked.

Backtracking. Unfortunately, now there would be an even worse problem with backtracking.

We have 3 different rules for applications, with none of the rules being better than the others. In

the worst case, we have to try the 3 rules for every application. This would be quite inefficient in

practice. While using just one of the rules in an implementation addresses the efficiency problem, it

gives up the expressiveness afforded by the other rules, requiring programs with more annotations

or the addition of new constructs and typing rules. If we use App1 only, then we need to write:

((𝜆𝑧. (𝜆𝑓 . 𝑓 1 : (𝐼 → 𝐼 ) → 𝐼 ) (((𝜆𝑥 . 𝜆𝑦. 𝑦) : 𝐼 → 𝐼 → 𝐼 ) 𝑧)) : 𝐼 → 𝐼 ) 1

Here we desugar the let expression into an explicit lambda, so that we can annotate the desugared

lambda. In addition, we would need to introduce an annotation in (𝜆𝑥. 𝜆𝑦. 𝑦) 𝑧. Alternatively, we
could introduce let expressions directly together with corresponding typing rules, to address the

issue with let 𝑧 = 1 in . . ., and also change the term (𝜆𝑥 . 𝜆𝑦. 𝑦) 𝑧 to a let expression. However, as

we shall discuss in Section 2.3, introducing let expressions still has some issues.

2.3 Binding Constructs
As Dunfield and Krishnaswami [2021] observe, binding constructs, such as let expressions or

eliminators for sums introduce some additional complications for bidirectional typing. The Pfenning

recipe to derive bidirectional rules applies to introduction and elimination forms, but let-expressions

are neither. So, the first challenge is to decide how to bidirectionalize let expressions:

Γ ⊢ 𝑒1 ⇒ 𝐴 Γ, 𝑥 : 𝐴 ⊢ 𝑒2 : 𝐵

Γ ⊢ let 𝑥 = 𝑒1 in 𝑒2 : 𝐵
Let

It is unclear to further determine the direction of the second premise and conclusion. The suggested

approach is to have two variants of the rule, to type check more programs.

Γ ⊢ 𝑒1 ⇒ 𝐴 Γ, 𝑥 : 𝐴 ⊢ 𝑒2 ⇒ 𝐵

Γ ⊢ let 𝑥 = 𝑒1 in 𝑒2 ⇒ 𝐵
LetInf

Γ ⊢ 𝑒1 ⇒ 𝐴 Γ, 𝑥 : 𝐴 ⊢ 𝑒2 ⇐ 𝐵

Γ ⊢ let 𝑥 = 𝑒1 in 𝑒2 ⇐ 𝐵
LetChk

For the example mentioned above, rewritten into a let-binding form:

let 𝑧 = 1 in (𝜆𝑓 . 𝑓 1 : ((𝐼 → 𝐼 ) → 𝐼 )) (let 𝑥 = 𝑧 in 𝜆𝑦. 𝑦)
the outside let uses LetInf rule to infer its result. The inside let uses LetChk to propagate the

type 𝐼 → 𝐼 to the body. Rule LetChk is similar to App2, but specialized to let expressions.

Unclear annotatability. Dunfield and Pfenning [2004] suggested that annotations are only needed
at redexes. However, Dunfield and Krishnaswami [2021] noted that this is not true in the presence

of binding constructs, even with two rules for binding constructs. For instance, consider a type

system with two let rules and only the App1 rule. Now consider the (unannotated) expression:

(let 𝑥 = 1 in 𝜆𝑓 . 𝑓 𝑥) (𝜆𝑥. 𝑥)
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In this case, we must either put annotations on the body of let, then use LetInf to infer the type

of the let expression, or around the let expression to use the contextual information to check its

body. Thus, for some bidirectional type systems with binding constructs, it may not be easy to give

programmers a clear guideline as to where to place annotations.

2.4 Subtyping
In calculi with subtyping, an important idea is that the subsumption rule is used to encapsulate the

uses of subtyping in a single place. This is commonly used in type assignment systems (TASs), and

also in (simple) bidirectional type systems. The bidirectional rule for subtyping is analogous to rule

Sub in Fig 1, with type equality replaced with subtyping.

Γ ⊢ 𝑒 ⇒ 𝐴 𝐴 <: 𝐵

Γ ⊢ 𝑒 ⇐ 𝐵
Sub

However, in the presence of more complex subtyping relations, the bidirectional subsumption

rule is not powerful enough to encapsulate many of the desired uses of subtyping. For instance,

intersection types [Barendregt et al. 1983; Coppo et al. 1981; Pottinger 1980; Reynolds 1991] are

used to assign multiple types to one expression. Type systems with intersection types often use

three subtyping rules to characterize this idea:

𝐴 <: 𝐶

𝐴 & 𝐵 <: 𝐶
SAndL

𝐵 <: 𝐶

𝐴 & 𝐵 <: 𝐶
SAndR

𝐴 <: 𝐵 𝐴 <: 𝐶

𝐴 <: 𝐵 & 𝐶
SAnd

If we use rule App1, and the bidirectional subsumption rule, then some programs that we expect

to type check, would no longer type check. For instance, (𝜆𝑓 . 𝑓 1) : ((𝐼 → 𝐼 ) & (𝐹 → 𝐹 )) → 𝐼 (𝐹

stands for the Float type) is a higher order function that expects an overloaded function with the

intersection type (𝐼 → 𝐼 ) & (𝐹 → 𝐹 ). This function cannot type check using the App1 rule:

𝑓 : (𝐼 → 𝐼 ) & (𝐹 → 𝐹 ) ⊢ 𝑓 ⇒ (𝐼 → 𝐼 ) & (𝐹 → 𝐹 ) 𝑓 : (𝐼 → 𝐼 ) & (𝐹 → 𝐹 ) ⊢ 1 ⇐ ?

𝑓 : (𝐼 → 𝐼 ) & (𝐹 → 𝐹 ) ⊢ 𝑓 1 ⇒ ?

App1Fail

In the rule App1, the function 𝑒1 is expected to have function type𝐴 → 𝐵, instead of the intersection

type in this case. Thus, rule App1 will reject this program. In contrast, the equivalent TAS would

accept the program above. A possible solution is to modify the application rule as follows:

Γ ⊢ 𝑒1 ⇒ 𝐴 𝐴 <: 𝐵 → 𝐶 Γ ⊢ 𝑒2 ⇐ 𝐵

Γ ⊢ 𝑒1 𝑒2 ⇒ 𝐶
App

This rule allows for a more flexible form of application, that solves our problem, since it accounts

for subtyping and for types that are subtypes of functions. However, there are two issues with

this rule. The first one is that the rule gives up the principle of encapsulating uses of subtyping

in the subsumption rule. The second one is that the rule is non-algorithmic (since the type 𝐵 is

guessed). The second issue is solvable by creating specialized relations that avoid guessing 𝐵 and

thus can be implemented in an algorithm. This is currently the standard solution for this problem in

calculi with bidirectional typing. In calculi with intersection types, a selection/matching judgment

is introduced in the application rules [Davies and Pfenning 2000; Huang et al. 2021]:

Γ ⊢ 𝑒1 ⇒ 𝐴 𝐴 ⊲ 𝐵 → 𝐶 Γ ⊢ 𝑒2 ⇐ 𝐵

Γ ⊢ 𝑒1 𝑒2 ⇒ 𝐶
App

The selection judgment 𝐴 ⊲ 𝐵 → 𝐶 simply tries to select one instance from different branches of

intersection types. The selection judgment should, ideally, be sound and complete to 𝐴 <: 𝐵 → 𝐶 .

Although this approach addresses the algorithmic problem, it requires modifying the standard
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application rule and coming up with a new specialized rule and a new auxiliary judgment for

applications. Similar solutions exist for other subtyping relations, such as relations with union

types [Rioux et al. 2023], polymorphic types [Dunfield and Krishnaswami 2013; Zhao et al. 2019],

etc. However, it would be preferable to use the standard application rule and delegate dealing with

subtyping to a stronger subsumption rule, thus avoiding the need for specialized relations.

2.5 Problem Statement and Paper Roadmap
Bidirectional typing provides great value for money: it is a simple, lightweight approach that can

scale up to many different type systems and features. In practice, it eliminates the need for many

obvious annotations, while requiring only a reasonable amount of annotations. However, as seen

in this section, it does have some limitations. In particular, we identified three concrete problems:

(1) Trade-off between expressive power and backtracking. As we have seen in Sections 2.1

and 2.2, there is no single application rule that is always better. Choosing one of the rules

only limits the expressive power (i.e. it results in more required annotations). Choosing all

the rules raises efficiency concerns since backtracking seems to be required.

(2) Unclear annotatability and rule duplication. In the presence of certain features, and

in particular binding constructs, there is no simple guideline for how to identify where

annotations are needed. Moreover, often multiple versions of a rule are needed.

(3) Inexpressive subsumption. The bidirectional subsumption rule lacks expressive power.

Many type systems with subtyping require changes in other rules, to accommodate for the

lack of expressive power of bidirectional subsumption. In addition, new auxiliary relations,

which provide specialized forms of subtyping, are often needed.

We would like to retain the key advantages of bidirectional typing, while improving on the three

points above. As we shall see, contextual typing provides a generalization of bidirectional typing

that largely realizes this goal. Sections 3 and 4 will show how to address (1) and (2) first in a

simplified setting. Section 5 will show how to deal with (3) and present a more complete type

system with subtyping.

3 Quantitative Type Assignment Systems
In this section, we introduce Quantitative Type Assignment Systems (QTASs). QTASs are variants of

type assignment systems enrichedwith a notion of counters, which generalizemodes in bidirectional

typing. QTASs serve as an intermediate step in between traditional type assignment systems and

algorithmic formulations. A QTAS guides the formulation of the algorithmic system and aids in its

metatheory. Unlike type assignment systems, QTASs precisely specify where type annotations are

needed. Moreover, they quantify the amount of type information that a term needs in order to type

check. As we shall see, with QTASs, we can have a type system that includes all the expressive power

of the three application rules discussed in Section 2. In Section 4 we will present a non-backtracking
algorithmic formulation that can be used to implement our most expressive QTAS in this section.

3.1 Quantitative Type Assignment Systems for STLC
We present several variants of QTAS for STLC in this section to illustrate the key ideas and to

establish a connection to standard bidirectional typing and the let arguments go first approaches.

Syntax. The syntax of types and typing environments is the same for all the variants, but

expressions and counters change according to each QTAS. For expressions the key difference is

whether annotated expressions (𝑒 : 𝐴) are supported or not. We define types and environments

below. Metavariables 𝐴, 𝐵,𝐶, 𝐷 range over types. Types are integer types and function types. A

typing environment is a sequence of variables associated with their types.
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Γ ⊢𝑛 𝑒 : 𝐴 (Under Γ, expression 𝑒 needs 𝑛 contextual information to have type 𝐴.)

DLit

Γ ⊢0 𝑖 : Int

DVar
𝑥 : 𝐴 ∈ Γ

Γ ⊢0 𝑥 : 𝐴

DAnn
Γ ⊢∞ 𝑒 : 𝐴

Γ ⊢0 (𝑒 : 𝐴) : 𝐴

DLam
Γ, 𝑥 : 𝐴 ⊢∞ 𝑒 : 𝐵

Γ ⊢∞ 𝜆𝑥 . 𝑒 : 𝐴 → 𝐵

DApp1

Γ ⊢0 𝑒1 : 𝐴 → 𝐵 Γ ⊢∞ 𝑒2 : 𝐴

Γ ⊢0 𝑒1 𝑒2 : 𝐵

DApp2

Γ ⊢∞ 𝑒1 : 𝐴 → 𝐵 Γ ⊢0 𝑒2 : 𝐴

Γ ⊢∞ 𝑒1 𝑒2 : 𝐵

DSub
Γ ⊢0 𝑒 : 𝐴 𝐴 = 𝐵

Γ ⊢∞ 𝑒 : 𝐵

Fig. 3. STLC with all-or-nothing counters.

Types 𝐴, 𝐵,𝐶, 𝐷 ::= Int | 𝐴 → 𝐵

Typing Environments Γ ::= · | Γ, 𝑥 : 𝐴

3.2 All-or-Nothing Counters
The first QTAS that we are going to show is the one with all-or-nothing counters. We define its

expressions and counters below. This QTAS is equivalent to the standard bidirectional typing rules

presented in Fig. 1 extended with the App2 rule, and with an inference rule for integers.

Expressions 𝑒 ::= 𝑖 | 𝑥 | 𝜆𝑥 . 𝑒 | 𝑒1 𝑒2 | 𝑒 : 𝐴

Counters 𝑛 ::= 0 | ∞
Expressions consist of integers, variables, lambdas, applications and annotated terms. In this version

of a QTAS, counters are degenerate and can only be nothing (0) or everything (∞). We use counters

to represent how much type information is needed, from the surrounding context, when type

checking expressions. The two counters represent two extremes: 0 means that no type information

is needed to type a term;∞ means that all type information is needed to type a term.

Typing and comparison with modes. We present typing in Fig. 3. The form of the typing judgement

is Γ ⊢𝑛 𝑒 : 𝐴, which means that under environment Γ, expression 𝑒 is typeable with 𝐴 assuming

𝑛 contextual information about 𝐴. Readers familiar with bidirectional typing may interpret two

instances of counters as modes: counter 0 is the inference mode and counter ∞ is the checking

mode. In other words, for this first formulation of a QTAS, the rules that we present in Fig. 3 are

almost the same as those in Fig. 1. The main difference is notational: we simply use counters instead

of modes, which is of course a rather superficial difference for this version.

There are two other differences to the rules in Fig. 1. Firstly, we include a version of the rule

App2 (rule DApp2) as well, because we wish to capture all mode-correct rules for applications

in standard bidirectional typing. Secondly, the DLit rule, when interpreted bidirectionally, is in

inference mode, rather than in checking mode. Using 0 as the counter for the DLit is consistent
with the interpretation of the counter, which measures how much information is needed from the

surrounding context. For integers no information is needed. Finally, although the DSub rule is the

same as in bidirectional typing, it is worthwhile reinterpreting the rule from the point of view of a

QTAS. This rule states that a term that needs no information to be typed can be interpreted as a

term that requires more information to be typed. In other words, additional contextual information

does not affect typeability. The soundness and completeness theorems to the type system in Fig. 1,

extended with an inference rule for integers and with the App2 rule are straightforward.

Theorem 3.1 (Soundness).

• If Γ ⊢0 𝑒 : 𝐴 then Γ ⊢ 𝑒 ⇒ 𝐴. • If Γ ⊢∞ 𝑒 : 𝐴 then Γ ⊢ 𝑒 ⇐ 𝐴.
Theorem 3.2 (Completeness).

• If Γ ⊢ 𝑒 ⇒ 𝐴 then Γ ⊢0 𝑒 : 𝐴. • If Γ ⊢ 𝑒 ⇐ 𝐴 then Γ ⊢∞ 𝑒 : 𝐴.
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DLit

Γ ⊢0 𝑖 : Int

DVar
𝑥 : 𝐴 ∈ Γ

Γ ⊢0 𝑥 : 𝐴

DLam
Γ, 𝑥 : 𝐴 ⊢𝑛 𝑒 : 𝐵

Γ ⊢(𝑆 𝑛) 𝜆𝑥 . 𝑒 : 𝐴 → 𝐵

DApp

Γ ⊢(𝑆 𝑛) 𝑒1 : 𝐴 → 𝐵 Γ ⊢0 𝑒2 : 𝐴

Γ ⊢𝑛 𝑒1 𝑒2 : 𝐵

Fig. 4. STLC with application counters.

3.3 Application Counters
We now present another QTAS with application counters that is equivalent to the type system in

Fig. 2. Unlike all-or-nothing counters, application counters measure how much contextual type

information we need to type a term. We define the syntax below and present the typing in Fig. 4.

Expressions 𝑒 ::= 𝑖 | 𝑥 | 𝜆𝑥. 𝑒 | 𝑒1 𝑒2

Counters 𝑛 ::= 0 | 𝑆 𝑛
We have two instances of counters: nothing (0) and 𝑆 𝑛. We do not deal with annotated terms,

thus 𝑒 : 𝐴 is not included. The two interesting rules are DLam rule and DApp. In DLam, counter 𝑆 𝑛
indicates that in the function type 𝐴 → 𝐵, the input type 𝐴 must be known from the surrounding

context. Then we can use it as the type of bound variable 𝑥 . In DApp, we infer the type of 𝑒2, and

increment the counter 𝑛 of 𝑒1, to express that 𝐴 is known. Thus, we can infer the type 𝐴 → 𝐵 with

the help of propagated information. The output type 𝐵 will be the result type of the application.

Intuitively, the counter denotes the size of the application stack. Thus we can show a corre-

spondence to the type system in Fig. 2 with the following theorems. What we need is to define an

auxiliary judgment that connects the counter to the application stack 𝑛 ∼ Ψ ∼ 𝐴. The 0 counter

connects to an empty stack and any type, and 𝑆 𝑛 connects to Ψ, 𝐴 and 𝐴 → 𝐵 inductively.

0 ∼ . ∼ 𝐴
∼Empty

𝑛 ∼ Ψ ∼ 𝐵

𝑆 𝑛 ∼ Ψ, 𝐴 ∼ 𝐴 → 𝐵
∼Cons

If the term 𝑒 can be typed with the type 𝐴 with counter 𝑛 and 𝑛 is consistent with Ψ, it can infer 𝐴

with the application stack Ψ, and vice-versa.

Theorem 3.3 (Soundness). If Γ ⊢𝑛 𝑒 : 𝐴 and 𝑛 ∼ Ψ ∼ 𝐴, then Γ p Ψ ⊢ 𝑒 ⇒ 𝐴.

Theorem 3.4 (Completeness). If Γ p Ψ ⊢ 𝑒 ⇒ 𝐴 and 𝑛 ∼ Ψ ∼ 𝐴, then Γ ⊢𝑛 𝑒 : 𝐴.

3.4 All in One
Finally, we show a QTAS that combines all-or-nothing counters and application counters. Compared

with the previous QTASs, we include both annotated terms and application counters.

Expressions 𝑒 ::= 𝑖 | 𝑥 | 𝜆𝑥. 𝑒 | 𝑒1 𝑒2 | 𝑒 : 𝐴

Counters 𝑛 ::= 0 | ∞ | 𝑆 𝑛
Syntactic Sugar let 𝑥 = 𝑒1 in 𝑒2 ≜ (𝜆𝑥. 𝑒2) 𝑒1

We present our typing rules in Fig. 5. DLit and DVar are unsurprising. In rule DAnn the annotated
term 𝑒 : 𝐴 is typeable with type 𝐴 without any additional contextual type information, if 𝑒 is

typeable with 𝐴 with full contextual information. DLam type checks a lambda only when the

counter can be decreased, which means that the information for the input type 𝐴 must be available

contextually. The 𝑛− meta-operation is defined with two simple cases:∞− = ∞; and (𝑆 𝑛)− = 𝑛.

The lambda body (𝑒) may itself require some amount of contextual information 𝑛. For instance, the

lambda term 𝜆𝑥 . 𝜆𝑦. 𝑥 +𝑦 is typeable if the counter is at least 2: the lambda body 𝜆𝑦. 𝑥 +𝑦 requires

type information for 𝑦, whereas the outer lambda requires type information for 𝑥 . Rules DApp1
and DApp2 describe two situations: whether the function can infer or the argument can infer. We

use the word infer here to represent the situation where the counter is 0. In DApp1, if the function
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DAnn
Γ ⊢∞ 𝑒 : 𝐴

Γ ⊢0 (𝑒 : 𝐴) : 𝐴

DLam
Γ, 𝑥 : 𝐴 ⊢𝑛− 𝑒 : 𝐵

Γ ⊢𝑛 𝜆𝑥 . 𝑒 : 𝐴 → 𝐵

DApp1

Γ ⊢0 𝑒1 : 𝐴 → 𝐵 Γ ⊢∞ 𝑒2 : 𝐴

Γ ⊢0 𝑒1 𝑒2 : 𝐵

DLit

Γ ⊢0 𝑖 : Int

DVar
𝑥 : 𝐴 ∈ Γ

Γ ⊢0 𝑥 : 𝐴

DSub
Γ ⊢0 𝑒 : 𝐴 𝑛 ≠ 0

Γ ⊢𝑛 𝑒 : 𝐴

DApp2

Γ ⊢(𝑆 𝑛) 𝑒1 : 𝐴 → 𝐵 Γ ⊢0 𝑒2 : 𝐴

Γ ⊢𝑛 𝑒1 𝑒2 : 𝐵

Fig. 5. All-in-one QTAS for STLC.

Γ ⊢0 1 : 𝐼

Γ, 𝑧 : 𝐼 ⊢0 𝑧 : 𝐼

. . .

Γ, 𝑧 : 𝐼 , 𝑥 : 𝐼 ⊢∞ 𝜆𝑦. 𝑦 : 𝐼 → 𝐼
DLam

. . . Γ, 𝑧 : 𝐼 ⊢∞ let 𝑥 = 𝑧 in (𝜆𝑦. 𝑦) : 𝐼 → 𝐼
Let

Γ, 𝑧 : 𝐼 ⊢0 (𝜆𝑓 . 𝑓 1 : ((𝐼 → 𝐼 ) → 𝐼 )) (let 𝑥 = 𝑧 in (𝜆𝑦. 𝑦)) : 𝐼
DApp1

Γ ⊢0 let 𝑧 = 1 in (𝜆𝑓 . 𝑓 1 : ((𝐼 → 𝐼 ) → 𝐼 )) (let 𝑥 = 𝑧 in (𝜆𝑦. 𝑦)) : 𝐼
Let

Fig. 6. Typing derivation for the motivating example in Section 2.2.

𝑒1 infers the type 𝐴 → 𝐵, then we have all the information available for the argument, and can

use that to check whether 𝑒2 has type 𝐴. In rule DApp2, if the argument 𝑒2 infers the type 𝐴, we

increment the counter for the function, since we have all the type information for the argument.

Thus 𝑒1 can have the type 𝐴 → 𝐵 with additional contextual information. Note that DApp2 merges

the expressiveness of rules App2 and AppS. Thus, we only need two rules, instead of three. As

before, DSub expresses that additional contextual information does not affect typeability.

We show that our all-in-one QTAS is complete with respect to both traditional bidirectional

typing (including rule App2 and integer inference) and application modes. Note that we allow

successor wrapping around ∞. Thus we use a relation ⋍ that relates modes to counters.

⇒⋍ 0

⋍0
⇐⋍ ∞

⋍∞
⇐⋍ 𝑛

⇐⋍ 𝑆 𝑛
⋍S

Theorem 3.5 (Completeness).

• If Γ ⊢ 𝑒 ⇔ 𝐴 and⇔⋍𝑛, then Γ ⊢𝑛 𝑒 : 𝐴. • If Γ p Ψ ⊢ 𝑒 ⇒ 𝐴 and 𝑛∼Ψ∼ 𝐴, then Γ ⊢𝑛 𝑒 : 𝐴.

Encoding let expressions. Like the approach by Xie and Oliveira [2018], we can encode let
expressions as syntactic sugar. The following derivation shows the derivable typing rule for let

expressions (from the syntactic sugar):

Γ ⊢0 𝑒1 : 𝐴 Γ, 𝑥 : 𝐴 ⊢𝑛 𝑒2 : 𝐵

Γ ⊢𝑛 let 𝑥 = 𝑒1 in 𝑒2 : 𝐵
Let

Γ, 𝑥 : 𝐴 ⊢𝑛 𝑒2 : 𝐵

Γ ⊢𝑆 𝑛 𝜆𝑥. 𝑒2 : 𝐴 → 𝐵
DLam

Γ ⊢0 𝑒1 : 𝐴

Γ ⊢𝑛 (𝜆𝑥 . 𝑒2) 𝑒1 : 𝐵
DApp2

On the left we present the derived rule and on the right we desugar the let expression to show how

the rule can be derived. This rule subsumes the two bidirectional typing rules for let expressions

presented in Section 2.3. The inference rule corresponds to 𝑛 being 0 and the checking rule corre-

sponds to 𝑛 being∞. Moreover, 𝑛 can also be 𝑆 𝑛′, which has no correspondence in the bidirectional

rules. Figure 6 illustrates the expressiveness of the QTAS with our example in Section 2.2, which

requires the power of the three application rules.

A remark and a closer look at counters. An important remark here is that the STLC allows for a

simple formulation of counters. As we shall see in Section 5, in more complex calculi, we may need
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a more fine-grained definition of counters. It is useful to have a closer look at the role of counters

to better understand how counters are used by a QTAS.

Counters in Fig. 5 track the number of times that the DApp2 rule needs to be applied to obtain

enough type information from the surrounding context. In turn this implies that counters track the

number of arguments that must have inferred types (since DApp2 requires that we must be able to

infer types for arguments). For instance consider the term (𝜆𝑥 . 𝑓 ) 1 (𝜆𝑥 . 𝑥) 2, where 𝑓 has type

(𝐼 → 𝐼 ) → 𝐼 → 𝐼 in the typing environment. The typing derivation for this term is:

. . .

Γ ⊢(𝑆 0) 𝜆𝑥 . 𝑓 : 𝐼 → (𝐼 → 𝐼 ) → 𝐼 → 𝐼
Lam

Γ ⊢0 1 : 𝐼

Γ ⊢0 (𝜆𝑥 . 𝑓 ) 1 : (𝐼 → 𝐼 ) → 𝐼 → 𝐼
DApp2

Γ ⊢∞ 𝜆𝑥 . 𝑥 : 𝐼 → 𝐼

Γ ⊢0 (𝜆𝑥 . 𝑓 ) 1 (𝜆𝑥. 𝑥) : 𝐼 → 𝐼
DApp1

Γ ⊢∞ 2 : 𝐼

Γ ⊢0 (𝜆𝑥. 𝑓 ) 1 (𝜆𝑥 . 𝑥) 2 : 𝐼
DApp1

For typing this term it is necessary that the type of the argument 1 is inferable (which is the

case). In other words we must use DApp2 to type (𝜆𝑥. 𝑓 ) 1. When typing the abstraction 𝜆𝑥. 𝑓

the QTAS uses a counter 𝑆 0, to signal that the lambda expression can only be typed in a context

with an inferable argument. The other two arguments (𝜆𝑥 . 𝑥 and 2) will be checked against 𝐼 → 𝐼

and 𝐼 , respectively, by using DApp1. Importantly, the arguments checked with DApp1 do not really

influence the types used in the typing derivation. While this is true for STLC, it is not true in

general. In some type systems, especially those with subtyping, the checkable arguments that are

typed with DApp1 may influence the typing derivation in significant ways. In that case, it is also

important to track the number of uses of DApp1 or checkable arguments (in addition to the number

of inferable arguments). We will come back to this point in Section 5.

3.5 Comparison and Correspondence to Type Assignment Systems
Differently from type assignment systems, QTASs use counters to quantify needed contextual

information, and restrict typing derivations. Still, QTASs are (in general) non-algorithmic. For

instance, in rule DLam (from Fig. 5), a counter 𝑆 𝑛 in the conclusion tells us that we have type

information for at least one argument, but does not specify what the type is. We could try to

interpret the typing judgment algorithmically as a function that takes the typing environment

Γ, the expression 𝑒 and the counter 𝑛 as inputs, and returns the type 𝐴 as an output. However, it

should be clear that the counter alone does not provide enough information to determine the type

information available from the context and compute the output type. The role of the counter in a

QTAS is merely to constrain which rules can be used, but types are still being guessed as in a TAS.

For example, if we have an identity function with a non-zero counter, this function can be typed

with multiple types.

Γ, 𝑥 : Int ⊢0 𝑥 : Int

Γ ⊢(𝑆 0) 𝜆𝑥 . 𝑥 : Int → Int
DLam

Γ, 𝑥 : (Int → Int) ⊢0 𝑥 : Int → Int

Γ ⊢(𝑆 0) 𝜆𝑥 . 𝑥 : (Int → Int) → (Int → Int)
DLam

Completeness and annotatability. TAS often work on unannotated expressions, guessing all

types. For calculi with undecidable type systems, it is impossible to find algorithms that directly

infer types for all unannotated expressions. Thus, algorithms often need to deal with annotated

expressions instead. Unlike a TAS, a QTAS requires annotations in a program. Only programs with

sufficient annotations will type-check. Therefore a QTAS can serve as a specification of a type

system informing where annotations are needed to type check programs.

The completeness of a QTAS with regard to a TAS tells us that a term in a TAS can be typed

in a QTAS after adding some annotations. Dunfield and Krishnaswami [2021] also call this result
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Γ ⊢ 𝑖 : Int⇝ 𝑖
ELit

(𝑥 : 𝐴) ∈ Γ

Γ ⊢ 𝑥 : 𝐴⇝ 𝑥
EVar

Γ, 𝑥 : 𝐴 ⊢ 𝑒 : 𝐵⇝ 𝑒′

Γ ⊢ 𝜆𝑥 . 𝑒 : 𝐴 → 𝐵⇝ 𝜆𝑥 . 𝑒′
ELam

need 𝑒1 = 0 ∨ need 𝑒2 = 0 Γ ⊢ 𝑒1 : 𝐴 → 𝐵⇝ 𝑒′
1

Γ ⊢ 𝑒2 : 𝐴⇝ 𝑒′
2

Γ ⊢ 𝑒1 𝑒2 : 𝐵⇝ 𝑒′
1
𝑒′

2

EApp1

need 𝑒1 = 𝑆 𝑛1 ∧ need 𝑒2 = 𝑆 𝑛2 Γ ⊢ 𝑒1 : 𝐴 → 𝐵⇝ 𝑒′
1

Γ ⊢ 𝑒2 : 𝐴⇝ 𝑒′
2

Γ ⊢ 𝑒1 𝑒2 : 𝐵⇝ 𝑒′
1
(𝑒′

2
: 𝐴)

EApp2

Fig. 7. Elaboration from a TAS to a QTAS, with one possible annotation strategy.
annotatability, which we prefer as it is more descriptive. For instance, we can prove the following

annotatability lemma between a TAS formulation of STLC and the QTAS in Fig. 5:

Theorem 3.6 ((Weak) Annotatability of QTAS). If Γ ⊢ 𝑒 : 𝐴, then ∃ 𝑒′, Γ ⊢0 𝑒
′

: 𝐴 and 𝑒 is the
type erasure of 𝑒′.

The standard annotatability theorem, which we will refer to as weak annotatability, shows that
our QTAS is complete to a TAS by inserting annotations on the unannotated terms. However, it

does not tell us where type annotations are needed. In bidirectional typing, by strictly following

the Pfenning recipe, we can obtain an informal guideline of only putting annotations on redexes.

However this guideline, after adding more constructs and more expressive rules, becomes less

clear [Dunfield and Krishnaswami 2021] (see also Section 2.3).

Strong annotatability of a QTAS. With a QTAS we can prove a stronger annotatability theorem

that also tells us where annotations are needed and formalizes guidelines for how to annotate a

program. To formalize strong annotatability, we first introduce a function need, which specifies

the type information needed by an (unannotated) term to type check in a QTAS.

need (𝜆𝑥. 𝑒) = 𝑆 (need 𝑒) need 𝑖 = 0

need (𝑒1 𝑒2) =
{
0, if need 𝑒1 = 0

𝑛, if need 𝑒1 = 𝑆 𝑛
need 𝑥 = 0

For a lambda, we need type information for the argument, and the body itself may need some

type information, so we need one more than the body. For an application, if the function 𝑒1 needs

no type information (i.e. 𝑒1 is an inferable term), then the whole application does not need type

information to type check. If the function 𝑒1 needs some amount of type information 𝑆 𝑛, the

application will need 𝑛, since the only rule that can be used in this case is DApp2, so the argument

𝑒2 must be inferable, thus providing information for the argument of the function.

With need we define a (type-directed) elaboration from a TAS to a QTAS in Fig. 7. In this

elaboration annotations are inserted where needed. The first three rules are straightforward. Only

the two application rules are interesting. EApp1 describes the case where applications do not

need annotations: if 𝑒1 needs no type information, then we can apply DApp1 to type check this

expression; if 𝑒2 needs no type information, then we can apply DApp2. EApp2 describes the case

where an application needs additional type information: if both 𝑒1 and 𝑒2 cannot be inferred (for

example (𝜆𝑥 . 𝑥) (𝜆𝑥 . 𝑥)), we then choose to annotate the argument 𝑒2 with the type 𝐴. With this

elaboration we can prove the stronger annotatability theorem:

Theorem 3.7 (Strong Annotatability).

(1) If Γ ⊢ 𝑒 : 𝐴⇝ 𝑒′, then Γ ⊢(need 𝑒 ) 𝑒
′

: 𝐴. (2) If Γ ⊢ 𝑒 : 𝐴⇝ 𝑒′, then Γ ⊢0 (𝑒′ : 𝐴) : 𝐴.

The first result (1) states that if the term 𝑒 is well-typed in the TAS and elaborated to 𝑒′ with
annotations inserted, then 𝑒′ is well-typed in the QTAS, provided that enough contextual type

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 266. Publication date: August 2024.



266:14 Xu Xue and Bruno C. d. S. Oliveira

information is given. The second result (2) states that, with a top-level annotation we obtain

an inferable term. This theorem formalizes a simple annotatability guideline for programmers.

Basically, programmers need to:

• provide a top-level type annotation for a term if the term needs type information (for instance

the full term is a lambda) (2);

• and, for applications where neither the function or the argument can be inferred, provide an

annotation for the argument (1).

Since let expressions let 𝑥 = 𝑒1 in 𝑒2 are encodable via applications, from the guideline above we

can deduce that if 𝑒1 is not inferable then we will need to add an annotation for 𝑒1.

Note that the annotation guideline is not unique: we could have different ways to annotate

programs. For instance, instead of annotating the argument, we can annotate the function 𝑒1. This

leads to the following elaboration rule:

need 𝑒1 ≡ 𝑆 𝑛1 ∧ need 𝑒2 ≡ 𝑆 𝑛2 Γ ⊢ 𝑒1 : 𝐴 → 𝐵⇝ 𝑒′
1

Γ ⊢ 𝑒2 : 𝐴⇝ 𝑒′
2

Γ ⊢ 𝑒1 𝑒2 : 𝐵⇝ (𝑒′
1

: 𝐴 → 𝐵) 𝑒′
2

EApp3

Rules EApp2 and EApp3 provide two different alternative annotatability strategies/guidelines. We

can replace EApp2 by EApp3, or include both rules and the strong annotatability lemma still holds.

To conclude we show how to use our guideline to annotate the example in Section 2.3. In essence,

since in the application neither the function nor the argument are inferable, we add an annotation

to the argument, as prescribed by our guideline:

(let 𝑥 = 1 in 𝜆𝑓 . 𝑓 𝑥) (𝜆𝑥. 𝑥 : 𝐼 → 𝐼 )

4 Syntax-Directed Algorithmic Type System
In this section, we provide a syntax-directed algorithmic type system that avoids backtracking and

implements the QTAS in Section 3.4. We start with the key idea behind the algorithm, and then

show the full formalization. Finally, we will discuss its metatheory: decidability, soundness and

completeness with respect to the QTAS.

4.1 Towards a Non-Backtracking Algorithm
A possible way to naively implement the QTAS discussed in Section 3.4, would be to use the

approach discussed in Section 2.2. Then we would have the three application rules (App1, App2
and AppS) and a type system combining three modes (inference, checking and application). Using

backtracking, we could try all the 3 rules. A key drawback of this approach is performance, since

backtracking could be very costly in practice.

Our goal is to have the same expressive power as the QTAS without using backtracking. When

designing the QTAS we already saw that App2 and AppS can be combined into a single rule (DApp2),
which removes some of the overlap between the application rules. However, we still have two

application rules and there are some types being guessed. Thus, in order to find a non-backtracking

algorithmic formulation, we must overcome these two problems first. To do so, it is helpful to

analyse the root cause of backtracking. For this we first identify when we need to use DApp1
and DApp2. Let us consider two special cases in an application 𝑒1 𝑒2: the function 𝑒1 is a lambda

abstraction 𝜆𝑥. 𝑒; or the function 𝑒1 is a variable 𝑥 . For these two cases we can clearly identify

which rule is better:

Γ ⊢(𝑆 𝑛) 𝜆𝑥 . 𝑒 : 𝐴 → 𝐵 Γ ⊢0 𝑒2 : 𝐴

Γ ⊢𝑛 (𝜆𝑥. 𝑒) 𝑒2 : 𝐵
DApp2

Γ ⊢0 𝑥 : 𝐴 → 𝐵 Γ ⊢∞ 𝑒2 : 𝐴

Γ ⊢0 𝑥 𝑒2 : 𝐵
DApp1

When 𝑒1 is a lambda abstraction 𝜆𝑥. 𝑒 , DApp1 will never succeed because 𝜆𝑥 . 𝑒 is not typeable

without contextual information. Thus, the only rule that we can use in this case is DApp2 which, if
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it successfully infers a type for 𝑒2, can then try to infer the type for the abstraction. When 𝑒1 is

a variable 𝑥 it is not too difficult to see that DApp1 is always a better rule to use, since the type

of variables can always be inferred. So using DApp1 instead of DApp2 will lead to strictly more

successful typing derivations. One other case that is similar to variables is when 𝑒1 is an annotation

expression 𝑒 : 𝐴. In this case, DApp1 is also the best choice. For the cases that we have analysed it

seems that we can pick the best application rule, based on the syntactic structure of 𝑒1. This is true,

but 𝑒1 can, in the general case, have more complex shapes, and those have to be dealt with as well.

Application consumer. An application consumer is either a variable, a lambda or an annotated

term. The three cases in an application consumer capture the three cases that we analysed so far.

For an application 𝑒1 𝑒2 what we are looking for is the application consumer for 𝑒2. That is, the term

that will eventually consume the contextual information for the argument. In direct applications,

such as (𝜆𝑥. 𝑥) 𝑒2, the application consumer is just 𝑒1 (𝜆𝑥. 𝑥 in this case). In the general case the

consumer may lie deep within 𝑒1. Consider the application ((𝜆𝑥. 𝑦) 1) (𝜆𝑧. 𝑧). Here 𝑦 is a variable,

with the type (𝐼 → 𝐼 ) → 𝐼 in the typing environment. Note that this term is typeable if we use

DApp1 for the outer application and DApp2 for the inner application. In this case 𝑦 is the consumer

that determines which application rule to use to type check the outer application (for the argument

𝜆𝑧. 𝑧). We should choose DApp1, since the application consumer is a variable (𝑦). Conversely, for the

inner application we should use DApp2 since the application consumer is 𝜆𝑥 . 𝑦. A second example

is (𝜆𝑥 . 𝜆𝑦. 𝑥 +𝑦) 1 2, where the consumer for 2 is 𝜆𝑦. 𝑥 +𝑦 and the consumer for 1 is (𝜆𝑥. 𝜆𝑦. 𝑥 +𝑦).
To design an efficient algorithm the notion of application consumer is useful, since the consumer

determines the best application rule to use. Therefore, once we know what is the best rule, we do

not need to try any other rules. A backtracking algorithm does not attempt to choose the best rule

to apply. Instead, it simply blindly tries each rule and, if some rule fails, it tries another one. To

find the best rule to apply, one possibility is to analyse the structure of the application to decide

which rule to apply. In other words we could look into an application 𝑒1 𝑒2 and find the consumer

for 𝑒2. Then, using the information about the consumer, we could decide which rule use in the

application. Nonetheless this approach still requires us to do multiple traversals on 𝑒1: traversing

𝑒1 to determine the syntactic form of the application consumer; and traversing 𝑒1 again to actually

type check the application. However, it is possible to do better, and traverse 𝑒1 only one time.

4.2 Key Idea: Teleporting Typing Judgements
Knowing about the syntactic form of the application consumer determines what application rule

is best to use, but it does not determine whether typing will be successful or not. For instance,

we could have the ill-typed application (𝜆𝑥. 𝑥 + 1) true, for which we could determine that

the best rule to use is DApp2, but typing would nonetheless fail. The key idea in our algorithm

is to bring the arguments and the corresponding application consumer together, so that once

we find the consumer, we immediately check whether the application succeeds or not. To do

this, in an application 𝑒1 𝑒2, we delay the typing of 𝑒2 until we encounter the application con-

sumer in the typing derivation. To visualize this idea consider the following (pseudo) derivation:

. . . Γ, 𝑥 : 𝐼 , 𝑦 : 𝐼 ⊢ 2 : 𝐼

Γ, 𝑥 : 𝐼 ⊢ 𝜆𝑦. 𝑥 + 𝑦 : 𝐼 → 𝐼
Lam

Γ, 𝑥 : 𝐼 ⊢ 1 : 𝐼

Γ ⊢ 𝜆𝑥 . 𝜆𝑦. 𝑥 + 𝑦 : 𝐼 → 𝐼 → 𝐼
Lam

Γ ⊢ 1 : 𝐼

Γ ⊢ (𝜆𝑥 . 𝜆𝑦. 𝑥 + 𝑦) 1 : 𝐼 → 𝐼
App

Γ ⊢ 2 : 𝐼

Γ ⊢ ((𝜆𝑥 . 𝜆𝑦. 𝑥 + 𝑦) 1) 2 : 𝐼
App

Normally, when encountering an application 𝑒1 𝑒2, we would attempt to check the typing of 𝑒2
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Types 𝐴, 𝐵,𝐶, 𝐷 ::= Int | 𝐴 → 𝐵

Expressions 𝑒 ::= 𝑖 | 𝑥 | 𝜆𝑥. 𝑒 | 𝑒1 𝑒2 | 𝑒 : 𝐴

Typing Environments Γ ::= · | Γ, 𝑥 : 𝐴

Surrounding Contexts Σ ::= □ | 𝐴 | 𝑒 ↦→ Σ

Generic Consumers 𝑔 ::= 𝑖 | 𝑥 | 𝑒 : 𝐴

Fig. 8. Syntax for the algorithmic type system.

directly in a premise of the application rule for 𝑒1 𝑒2. Instead, what we want is to transport the

typing premise for 𝑒2 into the rule that deals with the application consumer. We call this process of

moving the typing premise for 𝑒2 into the application consumer teleportation. For instance, in the

derivation above, we teleport Γ ⊢ 2 : 𝐼 into a premise of the corresponding consumer 𝜆𝑦. 𝑥 + 𝑦.
Similarly, we teleport the typing premise Γ ⊢ 1 : 𝐼 into a premise of 𝜆𝑥. 𝜆𝑦. 𝑥 + 𝑦.

Teleportation also works for the other 2 types of application consumers: variables and annotated

expressions. In the algorithm shown next, this idea can be implemented by having an auxiliary

form of context, which captures the surrounding context of an expression.

4.3 Algorithmic Type System
Syntax. The algorithmic type system shares the same syntax of types, expressions and typing

environments as the QTAS in Section 3.4. The differences are two more syntactic categories:

surrounding contexts and generic consumers. The full syntax is shown in Fig. 8. A surrounding

context (or context for short) captures the information that is in context for the current expression.

A surrounding context can be empty (□), which means that the context provides no information.

A context can be a full type 𝐴, which comes from type annotations, or known type information.

More interestingly, a context can also be a sequence of expressions 𝑒 , which denote arguments

to applications, followed by more contextual information. Intuitively, expressions in the context

represent deferred type checking tasks of applications, to be carried out when the application

consumer is found in the derivation.

As we have seen in Section 4.1 an important concept is the notion of application consumers.

Application consumers consume contextual information, and are especially interesting because,

in particular, they consume the contextual information about application arguments. However,

any expression can be a consumer of contextual information, since contextual information can

also be type information coming from type annotations. For instance, in the annotated expression

1 : Int, the surrounding context of 1 is Int, and 1 would consume that contextual type information.

Notice though, that it does not make sense for 1 to consume argument information, since 1 cannot

be applied (thus 1 is not an application consumer). Some kinds of expressions/consumers need

to handle contextual information in a special way, but some other expressions handle contextual

information in a generic way, via the subsumption rule. We call such expressions generic consumers.
Generic consumers in our calculus are integers, annotated expressions and variables.

Surrounding context and elimination forms. An important question that a language designer may

ask at this point is: how dowe determine the information that needs to be tracked in the surrounding

context in the general case? While in the previous section we have already motivated the need

for tracking arguments of applications, what if we extend the language with new constructs? A

general answer to this question is that we need to look at elimination forms. In the STLC there is

only one elimination form: applications 𝑒1 𝑒2. The arguments of applications provide information

that is helpful for the application consumers, which include the corresponding introduction form

(lambdas), as well as variables and annotations. The information from the arguments can then
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Γ ⊢ Σ ⇒ 𝑒 ⇒ 𝐴 (Typing: under environment Γ and context Σ, expression 𝑒 infers type 𝐴.)

Γ ⊢ □⇒ 𝑖 ⇒ Int
ALit

𝑥 : 𝐴 ∈ Γ

Γ ⊢ □⇒ 𝑥 ⇒ 𝐴
AVar

Γ ⊢ 𝐴 ⇒ 𝑒 ⇒ 𝐵

Γ ⊢ □⇒ 𝑒 : 𝐴 ⇒ 𝐴
AAnn

Γ ⊢ 𝑒2 ↦→ Σ ⇒ 𝑒1 ⇒ 𝐴 → 𝐵

Γ ⊢ Σ ⇒ 𝑒1 𝑒2 ⇒ 𝐵
AApp

Γ ⊢ □⇒ 𝑒2 ⇒ 𝐴 Γ, 𝑥 : 𝐴 ⊢ Σ ⇒ 𝑒 ⇒ 𝐵

Γ ⊢ 𝑒2 ↦→ Σ ⇒ 𝜆𝑥. 𝑒 ⇒ 𝐴 → 𝐵
ALam2

Γ, 𝑥 : 𝐴 ⊢ 𝐵 ⇒ 𝑒 ⇒ 𝐶

Γ ⊢ 𝐴 → 𝐵 ⇒ 𝜆𝑥 . 𝑒 ⇒ 𝐴 → 𝐶
ALam1

Γ ⊢ □⇒ 𝑔 ⇒ 𝐴 Σ ≠ □ 𝐴 ≈ Σ

Γ ⊢ Σ ⇒ 𝑔 ⇒ 𝐴
ASub

Γ ⊢ 𝐴 ≈ Σ (Matching: under environment Γ, type 𝐴 is matched by context Σ.)

Γ ⊢ 𝐴 ≈ □
SubEmpty

Γ ⊢ 𝐴 ≈ 𝐴
SubType

Γ ⊢ 𝐴 ⇒ 𝑒 ⇒ 𝐶 Γ ⊢ 𝐵 ≈ Σ

Γ ⊢ 𝐴 → 𝐵 ≈ 𝑒 ↦→ Σ
SubTerm

Fig. 9. Algorithmic typing and matching for the STLC.

provide the consumers with enough type information for checking typeability. Thus we need to

analyse the elimination forms in the language and identify the information that is needed for aiding

the consumers to establish typeability. Section 5 shows how this idea extends to record projections.

Typing. We show the full rules for algorithmic typing in Fig. 9. Typing has the form Γ ⊢ Σ ⇒
𝑒 ⇒ 𝐴, which is interpreted as: under typing environment Γ and a surrounding context Σ, the
expression 𝑒 infers the type 𝐴. Under this interpretation Γ, Σ and 𝑒 are inputs, and the type 𝐴 is an

output, determined by the three input parameters of the typing relation.

We can group rules ALit, AVar and AAnn together: they all infer the type without needing any

contextual information. Note that these rules cover all the generic consumer expressions. The

empty surrounding context □ expresses that no contextual information is needed. ALit and AVar
are unsurprising. AAnn infers the type 𝐴 from its annotation and the 𝐴 will become surrounding

context information to infer the expression 𝑒 .

There is a single rule for applications, unlike in the QTAS. Rule AApp simply adds the argument

𝑒2 to the surrounding context Σ. Using this extended context we then infer 𝑒1’s type, and obtain

the function type 𝐴 → 𝐵. The type 𝐵 will be the result type of the application 𝑒1 𝑒2. Conversely, we

now have two rules for lambda expressions, unlike the QTAS, which has a single rule. Rules ALam1
and ALam2 cover two cases when inferring the type of a lambda expression. The first case (rule

ALam1) is that the context is a type 𝐴 → 𝐵, which means that the lambda is fully annotated. We

use the type 𝐴 as the type of bound variable 𝑥 and add 𝐵 to the context to help infer the lambda

body. After we obtain the type 𝐶 , we then infer the type 𝐴 → 𝐶 . The second case (rule ALam2) is
when the first entry in the context is an argument expression 𝑒2. In this case, we infer the type of

𝑒2 and obtain the type 𝐴. The type 𝐴 is used as the type for the lambda variable 𝑥 , and we further

infer the type lambda body with the context Σ. Once we get the type 𝐵, the final inference result
for the lambda expression is 𝐴 → 𝐵. Importantly, note that the two rules do not overlap since the

syntactic form for the context is different. So the rules are syntax-directed.

Subsumption and the matching judgment. The subsumption rule ASub accounts for generic

consumers when their surrounding context is not empty (Σ ≠ □). We first infer their types with the

empty context and put the type 𝐴 into a new matching judgment Γ ⊢ 𝐴 ≈ Σ that matches the type

𝐴 with Σ. Subsumption does not deal with applications and lambda expressions, since the rules

that cover those expressions already deal with the cases when the context is not empty.
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The matching judgment checks whether the type inferred in the subsumption premise matches

up with the surrounding context. The rules for this judgment are defined by the structure of

contexts. SubEmpty states that an empty context matches any type 𝐴. SubType states that a full

type in a context matches type𝐴 when they are the same (syntactic) type. The most interesting rule

is SubTerm, which matches a function type with an application argument followed by a context: 𝑒

can be typed when the argument 𝑒 has the input type 𝐴, and the output type 𝐵 matches the context

Σ. SubTerm shows that our typing and matching relations aremutually dependent, which adds some

complexity to the algorithmic metatheory: related properties often need to be mutually proved.

Interestingly, the typing premises for arguments in DApp1, and DApp2 correspond, respectively, to

the typing premise of SubTerm and the first typing premise of ALam2. This observation is key to

establishing the equivalence between the QTAS and the algorithmic system.

Metatheory. Algorithmic typing has the following properties.

Lemma 4.1 (Typing Implies Matching). If Γ ⊢ Σ ⇒ 𝑒 ⇒ 𝐴, then Γ ⊢ 𝐴 ≈ Σ.

This property guarantees that all our typing rules have an invariant that the inferred type

matches the context. This gives rise to the following corollary.

Corollary 4.2 (A full type context infers the same type). If Γ ⊢ 𝐴 ⇒ 𝑒 ⇒ 𝐵, then 𝐴 = 𝐵.

ASub has several restrictions to avoid overlapping, but a general form of subsumption that works

for any expression is derivable. This lemma is proved with a generalization, that is proved together

with Lemma 4.1 by induction on typing.

Lemma 4.3 (General Subsumption). If Γ ⊢ □⇒ 𝑒 ⇒ 𝐴 and Γ ⊢ 𝐴 ≈ Σ, then Γ ⊢ Σ ⇒ 𝑒 ⇒ 𝐴.

Lemma 4.4 (Decidability of Matching). Γ ⊢ 𝐴 ≈ Σ is decidable.

Lemma 4.5 (Decidability of Typing). Γ ⊢ Σ ⇒ 𝑒 ⇒ 𝐴 is decidable.

The decidability of matching and typing is proved simultaneously. The measure used for typing

is size(Σ) + size(𝑒), and the measure for matching is size(Σ). Note that the size of context Σ is

defined in terms of the size of expressions. The definition of size(Σ) is:

size(□) = 0 size(𝐴) = 0 size( 𝑒 ↦→ Σ) = 1 + size(𝑒) + size(Σ)

and the definition of size(𝑒) is:

size(𝑖) = 1 size(𝑥) = 1 size(𝜆𝑥 . 𝑒) = 1 + size(𝑒)
size(𝑒1 𝑒2) = 2 + size(𝑒1) + size(𝑒2) size(𝑒 : 𝐴) = 1 + size(𝑒)

4.4 Soundness and Completeness to the QTAS
Algorithmic typing is equivalent (sound and complete) to the corresponding QTAS in Fig. 5.

Soundness. Informally, the approach to achieve soundness is to extract all arguments (𝑒) from the

context Σ and apply them back to 𝑒 . After building an application expression 𝑒 𝑒 , we then assert

that this constructed expression is well-typed in the QTAS. The general lemma that is needed to

prove soundness is shown in the appendix. For space reasons, here we just show key results, which

are corollaries of the general soundness lemma.

Corollary 4.6 (Soundness of Typing).

• If Γ ⊢ □⇒ 𝑒 ⇒ 𝐴, then Γ ⊢0 𝑒 : 𝐴. • If Γ ⊢ 𝐴 ⇒ 𝑒 ⇒ 𝐵, then Γ ⊢∞ 𝑒 : 𝐴.
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Types 𝐴, 𝐵,𝐶, 𝐷 ::= Int | Float | Top | 𝐴 → 𝐵 | 𝐴 & 𝐵 | {𝑎 : 𝐴}
Constants 𝑐 ::= 𝑖 | 𝑢 | + | +𝑖 | +𝑢
Expressions 𝑒 ::= 𝑐 | 𝑥 | 𝜆𝑥 . 𝑒 | 𝑒1 𝑒2 | 𝑒 : 𝐴 | {𝑎 = 𝑒} | 𝑒.𝑎
Environments Γ ::= . | Γ, 𝑥 : 𝐴

Check Counters 𝑚 ::= 0 | ∞ | 𝑆𝑐 𝑚 | 𝑆𝑎 𝑚
Counters 𝑛 ::=𝑚 | 𝑆𝑖 𝑛
Generic Consumers 𝑔 ::= 𝑐 | 𝑥 | 𝑒 : 𝐴 | {𝑎 = 𝑒}
Surrounding Contexts Σ ::= □ | 𝐴 | 𝑒 ↦→ Σ | 𝑎 ↦→ Σ

Fig. 10. Syntax of 𝐶&.

Completeness. Compared with soundness, completeness is easier to prove. We also need an

auxiliary relation that relates counters and a context Σ. We only show the key results here in the

form of corollaries. The generalized completeness theorem can be found in the appendix.

Corollary 4.7 (Completeness of Typing).

• If Γ ⊢0 𝑒 : 𝐴, then Γ ⊢ □⇒ 𝑒 ⇒ 𝐴. • If Γ ⊢∞ 𝑒 : 𝐴, then Γ ⊢ 𝐴 ⇒ 𝑒 ⇒ 𝐴.

5 A Calculus with Intersection Types, Overloading and Records
In this section, we present the contextual intersection calculus 𝐶&. 𝐶& features subtyping, inter-

section types, a simple form of overloading, and records. The QTAS and algorithmic typing of 𝐶&

is formalized, and their soundness and completeness are proved. The main purpose of 𝐶& is to

show how contextual typing can scale up to more complex calculi, and deal with subtyping. We

also illustrate that record labels can be another form of contextual information, helpful to aid with

type inference of record projections. Additionally, we show that, with more variety of contextual

information, counters are enriched to qualify the different kinds of contextual information.

5.1 Syntax
Types and Expressions. The syntax of 𝐶& is shown in Fig. 10. Four new types are introduced into

𝐶&: a Float type; a Top type, which is the supertype of all types; intersection types 𝐴 & 𝐵; and

single field records {𝑎 : 𝐴}. Multi-field record types are encoded using top, intersection and single

field record types [Reynolds 1997]:

{} ≜ Top {𝑎1 : 𝐴1, . . . , 𝑎𝑖 : 𝐴𝑖 } ≜ {𝑎1 : 𝐴1} & . . .& {𝑎𝑖 : 𝐴𝑖 }
In expressions, we separate out all constants into a new category: 𝑖 is an integer and 𝑢 is a floating

point number. The overloaded addition + can work on integers and floats. Furthermore, +𝑖 and +𝑢
are two specialized partially applied additions that work only on integers and floats respectively.

Two more new constructs are records, which are constructed by a sequence of labels 𝑎 bound to

expressions 𝑒 , and record projection 𝑒.𝑎. We define a metafunction ⟦𝑐⟧ that maps constants to

types. Note that we use 𝐼 and 𝐹 as abbreviations for Int and Float, respectively.

⟦𝑖⟧ = 𝐼 ⟦𝑢⟧ = 𝐹 ⟦+⟧ = (𝐼 → 𝐼 → 𝐼 ) & (𝐹 → 𝐹 → 𝐹 ) ⟦+𝑖⟧ = 𝐼 → 𝐼 ⟦+𝑢⟧ = 𝐹 → 𝐹

Qualifying counters. To account for the richer form of contextual information in the calculus, we

use a richer formulation of counters. Instead of a single successor used in the counters in Section 3,

we have three, more refined, forms of successors: 𝑆𝑖 , 𝑆𝑐 and 𝑆𝑎 . 𝑆𝑖 counts the availability of inferable
argument types (and the uses of CDApp2), and is the closest to the successor used in Section 3.4.

The successor counter (𝑆𝑎) counts labels, which are helpful to aid with the inference of types for

projections and provides a distinct use of counters. In addition, we introduce an extra counter 𝑆𝑐
that counts the number of arguments that check against a type (and the uses of CDApp1). Tracking
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checkable arguments is important because subtyping exploits information about arguments that

can be checked: the subtyping derivations will depend on the arguments in the context.

One useful observation here is that there is a mismatch between the syntax of counters and

contexts in the STLC calculus. The QTAS counts the needed contextual information for inferable

arguments; while contexts store all possible arguments, whether they are inferable or not. For our

STLC calculus this mismatch does not matter, so we do not need to track checkable arguments. In

𝐶& we need to be more precise and track checkable arguments, and there is a closer correspondence

between counters and contexts.

Note that in 𝐶& a well-formed counter is wrapped around check counters. This exposes an

interesting structure in applications with multiple arguments 𝑓 𝑒1 𝑒2 . . . 𝑒𝑛 . The inference result of

inner arguments can assist the inference of function 𝑓 ’s type, and checking outer arguments. In

other words, the general structure of an application is of the form 𝑓 𝑖 𝑐 where 𝑖 denotes a sequence of

inferable arguments, and 𝑐 denotes a sequence of checkable arguments. For example, (𝜆𝑥 . ((𝜆𝑓 . 𝑓 𝑥) :

(𝐼 → 𝐼 ) → 𝐼 )) 1 (𝜆𝑥. 𝑥) type checks, since the first argument 1 is inferable and helps inferring the

type for the corresponding lambda application consumer. Then the second argument (𝜆𝑥. 𝑥 ) can be

checked with 𝐼 → 𝐼 . However, if we swap the two arguments, (𝜆𝑓 . ((𝜆𝑥 . 𝑓 𝑥) : (𝐼 → 𝐼 ))) (𝜆𝑥. 𝑥) 1

does not type-check since 𝜆𝑥 . 𝑥 is not inferable and cannot help inferring the corresponding lambda

application consumer. Note also, that all inferable arguments are checkable. Therefore an application

such as 𝑓 1 (𝜆𝑥 . 𝑥) 2 can be interpreted as being of the form 𝑓 𝑖 𝑐 𝑐 . Any 𝑓 𝑖 𝑐 𝑖 expressions are also

𝑓 𝑖 𝑐 𝑐 expressions: we can always check inferable arguments. Once we encounter an argument that

must be checked, then all subsequent arguments can be checked. We need to apply (C)DApp1, which
provides enough information to check all subsequent arguments. Interestingly, similar structures

appear in applications for approaches based on local type inference [Pierce and Turner 2000].

To conclude, in 𝐶& counters have a broader role, and they do not only quantify, but they also

qualify available contextual type information. In 𝐶& counters can be interpreted as a kind of mask

that classifies what each piece of contextual information in the surrounding context is.

Surrounding Contexts. Compared with the changes in counters, there is only one small change

in contexts. We allow labels in contexts: 𝑎 ↦→ Σ is a label followed by a context. In 𝐶& there is a

new elimination form: record projections 𝑒.𝑎. Thus, as described in Section 4.3, we need to identify

the information from the elimination form that is helpful for the corresponding consumers, which

includes record expressions (the introduction form), as well as variables and annotated expressions.

For projections, labels are the information that is needed to help the consumers establish typeability.

Thus labels are now also tracked in the context. Note also that in𝐶& we now achieve a close match

between counters and contexts. For example, 𝑆𝑖 𝑆𝑐 𝑆𝑎 0 matches 𝑒1 ↦→ 𝑒2 ↦→ 𝑎1 ↦→ □, where 𝑒1

infers and 𝑒2 checks during typing.

5.2 QTAS: Typing and Subtyping
Typing. The QTAS for 𝐶& is shown at the top of Fig. 11. The 𝑛− meta-operation is the same as

the first calculus. CDApp1 and CDApp2 account for the two application rules. Rule CDApp1 tracks

one more counter. As before, we check whether 𝑒2 has the type 𝐴 with full contextual information.

Differently to previous QTASs, function 𝑒1 has the arrow type𝐴 → 𝐵 with the incremented counter

𝑆𝑐 𝑚 to denote the availability of one additional checkable argument. This information is helpful for

subsumption. In the CDLam rule it is important to note that the decrement function is only defined

for∞ and 𝑆𝑖 𝑛, since the type of the argument must be known.

CDRcd deals with the introduction of records and requires some explanation. One may expect

that expressions like {𝑎 = 𝜆𝑥 . 𝑥}.𝑎 1 are typeable, by propagating the surrounding context (with

1), into the lambda. However, consider {𝑎1 = 1, 𝑎2 = 𝜆𝑥 . 𝑥}.𝑎1. We expect that this expression has
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Γ ⊢𝑛 𝑒 : 𝐴 (Under Γ, expression 𝑒 needs 𝑛 contextual information to have type 𝐴.)

CDConst

Γ ⊢0 𝑐 : ⟦𝑐⟧

CDVar
𝑥 : 𝐴 ∈ Γ

Γ ⊢0 𝑥 : 𝐴

CDAnn
Γ ⊢∞ 𝑒 : 𝐴

Γ ⊢0 (𝑒 : 𝐴) : 𝐴

CDLam
Γ, 𝑥 : 𝐴 ⊢𝑛− 𝑒 : 𝐵

Γ ⊢𝑛 𝜆𝑥 . 𝑒 : 𝐴 → 𝐵

CDApp1

Γ ⊢(𝑆𝑐 𝑚) 𝑒1 : 𝐴 → 𝐵 Γ ⊢∞ 𝑒2 : 𝐴

Γ ⊢𝑚 𝑒1 𝑒2 : 𝐵

CDApp2

Γ ⊢(𝑆𝑖 𝑛) 𝑒1 : 𝐴 → 𝐵 Γ ⊢0 𝑒2 : 𝐴

Γ ⊢𝑛 𝑒1 𝑒2 : 𝐵

CDSub
Γ ⊢0 𝑒 : 𝐴 𝑛 ≠ 0 𝐴 <:𝑛 𝐵

Γ ⊢𝑛 𝑒 : 𝐵

CDRcd

Γ ⊢0 𝑒𝑖 : 𝐴𝑖

Γ ⊢0 {𝑎𝑖 = 𝑒𝑖 } : {𝑎𝑖 : 𝐴𝑖 }

CDPrj

Γ ⊢(𝑆𝑎 𝑚) 𝑒 : {𝑎 : 𝐴}
Γ ⊢𝑚 𝑒.𝑎 : 𝐴

𝐴 <:𝑛 𝐵 (𝐴 is a subtype of 𝐵 and 𝑛 contextual information is known for 𝐵.)

CDSRefl

𝐴 <:0 𝐴

CDSInt

Int <:∞ Int

CDSFloat

Float <:∞ Float

CDSTop

𝐴 <:∞ Top

CDSArr
𝐶 <:∞ 𝐴 𝐵 <:𝑛⊖ 𝐷

𝐴 → 𝐵 <:𝑛 𝐶 → 𝐷

CDSRcd
𝐴 <:𝑚⊖ 𝐵

{𝑎 : 𝐴} <:𝑚 {𝑎 : 𝐵}

CDSAndL
𝐴 <:𝑛 𝐶 𝑛 ≠ 0

𝐴 & 𝐵 <:𝑛 𝐶

CDSAndR
𝐵 <:𝑛 𝐶 𝑛 ≠ 0

𝐴 & 𝐵 <:𝑛 𝐶

CDSAnd
𝐴 <:∞ 𝐵 𝐴 <:∞ 𝐶

𝐴 <:∞ 𝐵 & 𝐶

Fig. 11. QTAS typing and subtyping for 𝐶&.

type Int, but we cannot type 𝑎2 under any surrounding context: it is not possible to propagate

contextual information to 𝑎2. A similar situation happens with {𝑎1 = 1, 𝑎2 = 𝜆𝑥 . 𝑥} : {𝑎1 : Int},
where a record expression may be checked against a type that has fewer fields than the record

expression itself. Both of these bring up the question of what to do for the expressions in the fields

for which there is no contextual information (such as 𝑎2). To avoid this problem we require that

all fields must have inferable types in CDRcd. An alternative approach could be to employ a mixed

strategy where the fields that are present in the type/context are checked, and the fields that are

missing require inference. But this approach is more complex (although it can be algorithmically

modeled) and seems ad-hoc. Thus we opt for the simpler approach of requiring all record fields to

have inferred types.

For projections (rule CDPrj), we take the same strategy as App1. We increment the counter

and delegate the job of label selection to subsumption. Thus, our typing relation does not require
auxiliary relations for dealing with projections and applications. In the subsumption rule CDSub,
we introduce subtyping. Interestingly, subtyping is also parametrized by a counter, enabling it to

deal with contextual type information.

To illustrate how typing works, consider an example with overloaded addition. We omit the

derivation of subtyping, which will be detailed later.

Γ ⊢0 + : (𝐼 → 𝐼 → 𝐼 ) & (𝐹 → 𝐹 → 𝐹 ) . . .
CDConst

Γ ⊢(𝑆𝑐 𝑆𝑐 0) + : 𝐼 → 𝐼 → 𝐼
CDSub

Γ ⊢∞ 1 : 𝐼

Γ ⊢(𝑆𝑐 0) + 1 : 𝐼 → 𝐼
CDApp1

Γ ⊢∞ 2 : 𝐼

Γ ⊢0 + 1 2 : 𝐼
CDApp1

When applying + to two integers, the counter will be incremented twice by the successor 𝑆𝑐 , which

tells that two arguments are needed. With additional contextual information, the type of + can be
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upcast to a function type via the subsumption rule which, in this case, is 𝐼 → 𝐼 → 𝐼 . Projections

are dealt with similarly. For example, assuming 𝑟 : {𝑥 : Int, 𝑦 : Float}, then 𝑟 .𝑥 infers Int.

Subtyping. Unlike conventional subtyping relations, our QTAS subtyping, shown at the bottom

of Fig. 11, also carries a counter. The counter 𝑛 expresses how much contextual information is

known for 𝐵, whereas 𝐴 is fully known. CDSRefl describes the situation when the counter is 0,

which means that we have no information for 𝐵. In this case we pick type 𝐴 for the supertype. If

the counter is∞, then we know everything about type 𝐵, corresponding to traditional subtyping.

CDSInt and CDSFloat are unsurprising and describe reflexivity for the two base types. CDSTop is
also standard. The rule CDSArr is interesting since it can deal with partially known information

about 𝐵. Note that 𝑛 cannot be 0, since it needs to be decreasable:

(𝑆𝑖 𝑛)⊖ = 𝑛 ∞⊖ = ∞ (𝑆𝑐 𝑚)⊖ =𝑚 (𝑆𝑎 𝑚)⊖ =𝑚

Thus𝐶 is known. In the first premise, since both𝐴 and𝐶 are known, the counter is set to∞. For the

second premise, which performs subtyping for the output types, we decrease the counter. CDSRcd
works similarly to CDSArr: the label information must be known for the supertype, although the

type of the field may or may not be known. The rules CDSAndL and CDSAndR are standard for

intersection types if we ignore counter information. The counters express that we can have all or

just partial information for 𝐶 . Interestingly, for CDSAnd, all the information for the supertype must

be known. Thus, the rule is just the standard rule when an intersection appears in the supertype.

We continue our example, to illustrate how the derivation of subtyping proceeds in subsumption.

𝐼 <:∞ 𝐼
CDSInt

𝐼 <:∞ 𝐼
CDSInt

𝐼 <:0 𝐼
CDSRefl

(𝐼 → 𝐼 ) <:(𝑆𝑐 0) (𝐼 → 𝐼 )
CDSArr

(𝐼 → 𝐼 → 𝐼 ) <:(𝑆𝑐 𝑆𝑐 0) (𝐼 → 𝐼 → 𝐼 )
CDSArr

(𝐼 → 𝐼 → 𝐼 ) & (𝐹 → 𝐹 → 𝐹 ) <:(𝑆𝑐 𝑆𝑐 0) (𝐼 → 𝐼 → 𝐼 )
CDSAndL

Metatheory. QTAS subtyping has following properties:

Lemma 5.1 (Reflexivity of Subtyping (Infinity)). 𝐴 <:∞ 𝐴

Lemma 5.2 (Transitivity of Subtyping). If 𝐴 <:𝑛 𝐵 and 𝐵 <:𝑛 𝐶 , then 𝐴 <:𝑛 𝐶 .

5.3 Algorithmic Typing and Subtyping
Algorithmic typing. We present the rules of algorithmic typing at the top of Fig. 12. Many rules are

the same as the type system in Section 4.3. For records, similarly to the QTAS in Fig. 11, CARcd deals
with the introduction of records. For a record projection 𝑒.𝑎 (rule CAPrj), we push the label 𝑎 into

the context and infer the expression 𝑒 with the single field record type {𝑎 : 𝐴}. CASub is interesting

since subtyping needs to deal with contextual information. Unlike conventional subtyping, which

compares two types, our contextual subtyping relation compares a type with a surrounding context,

which has partial information about the supertype. While comparing the type with the context, we

compute a supertype that matches the information in the context.

Algorithmic contextual subtyping. Algorithmic subtyping is presented at the bottom of Fig. 12. Γ,
𝐴 and Σ are taken as inputs and 𝐵 is an output. We group CASInt, CASTop, CASArr, CASRcd and

CASAnd together, since they cover the same situation where contexts are fully known types. In

those cases the computed supertype is exactly the type in the context. Rule CASArr is standard,

except for the additional computed types. The computed types in the premises are ignored since

the full supertype is already known. CASAnd and CASRcd are also quite standard and work similarly

to CASArr. In CASEmpty the computed supertype is𝐴. In CASTerm, an arrow type is the subtype of a
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Γ ⊢ Σ ⇒ 𝑒 ⇒ 𝐴 (Under environment Γ and context Σ, expression 𝑒 infers type 𝐴.)

Γ ⊢ □⇒ 𝑐 ⇒ ⟦𝑐⟧
CAConst

𝑥 : 𝐴 ∈ Γ

Γ ⊢ □⇒ 𝑥 ⇒ 𝐴
CAVar

Γ ⊢ 𝑎 ↦→ Σ ⇒ 𝑒 ⇒ {𝑎 : 𝐴}
Γ ⊢ Σ ⇒ 𝑒.𝑎 ⇒ 𝐴

CAPrj

Γ ⊢ 𝑒2 ↦→ Σ ⇒ 𝑒1 ⇒ 𝐴 → 𝐵

Γ ⊢ Σ ⇒ 𝑒1 𝑒2 ⇒ 𝐵
CAApp

Γ, 𝑥 : 𝐴 ⊢ 𝐵 ⇒ 𝑒 ⇒ 𝐶

Γ ⊢ 𝐴 → 𝐵 ⇒ 𝜆𝑥 . 𝑒 ⇒ 𝐴 → 𝐶
CALam1

Γ ⊢ □⇒ 𝑒𝑖 ⇒ 𝐴𝑖

Γ ⊢ □⇒ {𝑎𝑖 = 𝑒𝑖 } ⇒ {𝑎𝑖 : 𝐴𝑖 }
CARcd

Γ ⊢ □⇒ 𝑒2 ⇒ 𝐴 Γ, 𝑥 : 𝐴 ⊢ Σ ⇒ 𝑒 ⇒ 𝐵

Γ ⊢ 𝑒2 ↦→ Σ ⇒ 𝜆𝑥 . 𝑒 ⇒ 𝐴 → 𝐵
CALam2

Γ ⊢ 𝐴 ⇒ 𝑒 ⇒ 𝐵

Γ ⊢ □⇒ 𝑒 : 𝐴 ⇒ 𝐴
CAAnn

Γ ⊢ □⇒ 𝑔 ⇒ 𝐴 Σ ≠ □ Γ ⊢ 𝐴 <: Σ⇝ 𝐵

Γ ⊢ Σ ⇒ 𝑔 ⇒ 𝐵
CASub

Γ ⊢ 𝐴 <: Σ⇝ 𝐵 (Under environment Γ, A matches the context Σ and is a subtype of 𝐵.)

Γ ⊢ Int <: Int⇝ Int
CASInt

Γ ⊢ 𝐴 <: Top⇝ Top
CASTop

Γ ⊢ 𝐴 <: □ ⇝ 𝐴
CASEmpty

Γ ⊢ Float <: Float⇝ Float
CASFloat

Γ ⊢ 𝐶 <: 𝐴⇝ 𝐴′ Γ ⊢ 𝐵 <: 𝐷 ⇝ 𝐷 ′

Γ ⊢ 𝐴 → 𝐵 <: 𝐶 → 𝐷 ⇝ 𝐶 → 𝐷
CASArr

Γ ⊢ 𝐴 ⇒ 𝑒 ⇒ 𝐶 Γ ⊢ 𝐵 <: Σ⇝ 𝐷

Γ ⊢ 𝐴 → 𝐵 <: 𝑒 ↦→ Σ⇝ 𝐴 → 𝐷
CASTerm

Γ ⊢ 𝐴 <: 𝐵⇝ 𝐵′

Γ ⊢ {𝑎 : 𝐴} <: {𝑎 : 𝐵}⇝ {𝑎 : 𝐵}
CASRcd

Γ ⊢ 𝐴 <: Σ⇝ 𝐶

Γ ⊢ {𝑎 : 𝐴} <: 𝑎 ↦→ Σ⇝ {𝑎 : 𝐶}
CASLabel

Γ ⊢ 𝐴 <: Σ⇝ 𝐶 Σ ≠ □

Γ ⊢ 𝐴 & 𝐵 <: Σ⇝ 𝐶
CASAndL

Γ ⊢ 𝐵 <: Σ⇝ 𝐶 Σ ≠ □

Γ ⊢ 𝐴 & 𝐵 <: Σ⇝ 𝐶
CASAndR

Γ ⊢ 𝐴 <: 𝐵⇝ 𝐵′ Γ ⊢ 𝐴 <: 𝐶 ⇝ 𝐶′

Γ ⊢ 𝐴 <: 𝐵 & 𝐶 ⇝ 𝐵 & 𝐶
CASAnd

Fig. 12. Algorithmic typing and subtyping for 𝐶&.

term 𝑒 followed by a context Σ. We use the type 𝐴 as the context for typing 𝑒 , and check subtyping

between 𝐵 and Σ inductively, while computing a supertype 𝐷 for 𝐵. The computed supertype

is then 𝐴 → 𝐷 . CASLabel works similarly: a record type is a subtype of a label 𝑎 followed by a

context if their labels are the same. CASAndL and SAndR describe intersection cases. If 𝐴 & 𝐵 is a

subtype of the context Σ, then either 𝐴 or 𝐵 are subtypes of Σ resulting in a supertype 𝐶 . Note

that backtracking is needed here: we have to try with both CASAndL and CASAndR. This is expected
since this form of backtracking is inherent to subtyping relations with intersection types.

Metatheory. Algorithmic typing and subtyping have the following properties.

Lemma 5.3 (A full type context infers the same type). If Γ ⊢ 𝐵 ⇒ 𝑒 ⇒ 𝐴, then 𝐴 = 𝐵.

Lemma 5.4 (A full type context computes the same type). If Γ ⊢ 𝐴 <: 𝐵⇝ 𝐶 , then 𝐵 = 𝐶 .

Lemma 5.5 (Typing implies Subtyping). If Γ ⊢ Σ ⇒ 𝑒 ⇒ 𝐴, then Γ ⊢ 𝐴 <: Σ⇝ 𝐴.

Lemma 5.6 (General Subsumption of Algorithmic Typing). If Γ ⊢ □⇒ 𝑒 ⇒ 𝐴 and Γ ⊢ 𝐴 <:

Σ⇝ 𝐴′, then Γ ⊢ Σ ⇒ 𝑒 ⇒ 𝐴′.

5.4 Key Properties
The metatheory of 𝐶& requires significant changes, compared to the STLC calculus, because of

subtyping. Nonetheless soundness and completeness proofs employ similar strategies as the STLC
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calculus, with auxiliary relations relating counters to contexts. Furthermore the key corollaries are

still essentially of the same form.

Corollary 5.7 (Soundness of Typing).

• If Γ ⊢ □⇒ 𝑒 ⇒ 𝐴, then Γ ⊢0 𝑒 : 𝐴. • If Γ ⊢ 𝐴 ⇒ 𝑒 ⇒ 𝐵, then Γ ⊢∞ 𝑒 : 𝐴.
Corollary 5.8 (Completeness of Typing).

• If Γ ⊢0 𝑒 : 𝐴, then Γ ⊢ □⇒ 𝑒 ⇒ 𝐴. • If Γ ⊢∞ 𝑒 : 𝐴, then Γ ⊢ 𝐴 ⇒ 𝑒 ⇒ 𝐴.

Annotatability. One point worth mentioning about annotatability is that, for records, if the TAS

expression 𝑒 in a record field {𝑎 = 𝑒} needs contextual information, then the QTAS expression must

be annotated with its type. This is needed because records require all the fields to have inferred

types. Except for this, the annotatability guidelines remain the same as in the STLC. Note that the

rules for the TAS can be recovered by: 1) erasing the counter information in the rules in Fig. 11; and

2) ommiting the CDAnn rule. The full elaboration rules from the TAS to the QTAS, and the extended

need function can be found in the appendix.

Theorem 5.9 (Strong Annotatability).

(1) If Γ ⊢ 𝑒 : 𝐴⇝ 𝑒′, then Γ ⊢(need 𝑒 ) 𝑒
′

: 𝐴. (2) If Γ ⊢ 𝑒 : 𝐴⇝ 𝑒′, then Γ ⊢0 (𝑒′ : 𝐴) : 𝐴.

Type safety. The type-safety of 𝐶& is proved by first showing that typing is preserved between

the QTAS and the TAS. We use a simple erasure function |𝑒 | that erases all type annotations, so that
we obtain an unannotated expression that is typeable in the TAS. Then we prove that the TAS is

type sound via standard preservation and progress theorems. The small-step operational semantics

𝑒 ↩→ 𝑒′ is shown in the appendix.

Theorem 5.10 (Type preservation after erasure to TAS). If Γ ⊢𝑛 𝑒 : 𝐴, then Γ ⊢ |𝑒 | : 𝐴.

Theorem 5.11 (Preservation of TAS). For well-formed 𝑒 , if · ⊢ 𝑒 : 𝐴 and 𝑒 ↩→ 𝑒′, then · ⊢ 𝑒′ : 𝐴.

Theorem 5.12 (Progress of TAS). For well-formed 𝑒 , if · ⊢ 𝑒 : 𝐴 , then ∃ 𝑒′, 𝑒 ↩→ 𝑒′ or 𝑒 is a value.

Determinism and decidability. Typing and subtyping are non-deterministic, without further

restrictions, due to the presence of the subtyping rules for intersection types, which are overlapping.

To recover determinism in algorithmic typing, we need to impose some additional well-formedness

conditions on environments Γ, surrounding contexts Σ, types 𝐴 and expressions 𝑒 , to deal with

non-determinism caused by intersections. Well-formed intersections can either contain: record

types with distinct labels, or function types where the domains are distinct primitive types (Int and
Float). The latter restriction is sufficient to cover the form of overloading that we have in calculus,

but it is rather strict. We leave for future work relaxing the restrictions to allow more forms of

functional intersections and overloading. Under this set of restrictions we can prove determinism:

Lemma 5.13 (Determinism of Typing). For well-formed Γ, Σ and 𝑒 , if Γ ⊢ Σ ⇒ 𝑒 ⇒ 𝐴 and
Γ ⊢ Σ ⇒ 𝑒 ⇒ 𝐵, then 𝐴 = 𝐵.

Lemma 5.14 (Determinism of Subtyping). For well-formed Γ, Σ and 𝐴, if Γ ⊢ 𝐴 <: Σ⇝ 𝐵 and
Γ ⊢ 𝐴 <: Σ⇝ 𝐶 , then 𝐵 = 𝐶 .

Furthermore, using the same restrictions we can prove the decidability of typing and subtyping:

Theorem 5.15 (Decidability of Typing). For well-formed Γ, Σ and 𝑒 , Γ ⊢ Σ ⇒ 𝑒 ⇒ 𝐴 is
decidable.

Theorem 5.16 (Decidability of Subtyping). For well-formed Γ, Σ and 𝐴, Γ ⊢ 𝐴 <: Σ⇝ 𝐵 is
decidable.
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The measure used for decidability of 𝐶& is similar to Section 4.3. With soundness, completeness

and decidability of algorithmic formulation, we can obtain the decidability of QTAS as a corollary.

Corollary 5.17 (Decidability of the QTAS). For well-formed Γ and 𝑒 , Γ ⊢0 𝑒 : 𝐴 is decidable.

6 Related Work
In Section 2 we have already covered the closest related work: standard bidirectional typing [Dun-

field and Krishnaswami 2021], and the let arguments go first approach [Xie and Oliveira 2018]. As

discussed in Section 3, contextual typing can be viewed as a generalization of both approaches.

In this section we focus on discussing other closely related work. Other variants of bidirectional

typing, which are further away from our work, are covered in Dunfield and Krishnaswami’s survey.

Forms of contextual typing. Xie and Oliveira’s application stack Ψ is a form of context. As we

have seen our notion of surrounding context subsumes the application stack. There are several

other works [Bierman et al. 2014; Polikarpova et al. 2016; Pottier and Régis-Gianas 2006] that

employ typing relations similar to our algorithmic typing. Typically the form of the typing relation,

adapted to our notation here, is a variant of Γ ⊢ 𝐴 ⇒ 𝑒 ⇒ 𝐵, where the context is a type 𝐴. Bierman

et al. model the type inference approach adopted by TypeScript. Their expression contextual typing
judgment fills the role of the checking mode. The judgment is used to type-check 𝑛-ary uncurried

applications and it is useful to instantiate type variables coming from the function, and to type-check

the arguments of the function. Polikarpova et al.’s contextual type is an unrefined type, which

gets refined as more information is learned from doing inference on the subterms. Pottier and

Régis-Gianas use a context that is a shape. A shape has the form 𝛼.𝐴, where 𝛼 denotes a collection

of flexible type variables that are bound within 𝐴. A flexible type variable is similar to a unification

variable and can match with other types. In comparison to our work, we allow more forms of

contextual type information, since we can also have term arguments or labels. Moreover, those

works do not have a direct correspondence to the rule DApp2 in our work.

Norell [2007] formalizes Agda’s typing. Typing has an implicit context tracking a constraint set

that is used to aid type inference. This constraint set can also be viewed as a form of contextual

typing, and is helpful to defer type checking tasks until more information is discovered. However,

the constraint set is a global form of context that is updated and threaded through typing derivations.

Bidirectional typing with subtyping. Bidirectional typing has been extensively applied to type

systems with subtyping. Several bidirectional type systems with intersection types [Davies and

Pfenning 2000; Huang et al. 2021; Xue et al. 2022] require changes to the application rule to allow

functions to infer intersection types. An auxiliary relation is used to upcast the intersection type to

a function type. Some of these works [Huang et al. 2021; Xue et al. 2022] also support distributivity

rules for subtyping and model records via intersection types, where a similar problem appears for

projections. In a projection 𝑒.𝑎 the type of 𝑒 can be an intersection of single field records. Then we

need an auxiliary relation that takes the intersection and the label and selects the corresponding

field type. Our contextual typing approach avoids changes to existing rules and specialized auxiliary

relations. Instead, subsumption and contextual subtyping deal with intersection types in a single

place. Rioux et al. [2023] also have a calculus with intersection types, but additionally support

union types and more distributivity rules for subtyping. They need a special application rule with

a sophisticated auxiliary relation to deal with types of functions that can be intersection or union

types. This relation requires both the type of the function, as well as the type of the argument. So

the application rule also requires the inference of the argument, and is a variant of the App3 rule
described in Section 2.1. Consequently, their rule is, in some cases, weaker than DApp1 and there is
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no correspondence to the DApp2 rule either. While our work does not cover all the features studied

by Rioux et al., we believe that it is possible to scale up our techniques to deal with those features.

In bidirectional type systems with polymorphism [Dunfield and Krishnaswami 2013; Zhao et al.

2019], specialized auxiliary relations are also needed for applications. In this case, a function can

have a polymorphic type, which needs to be instantiated to become a function type. Then we can

use the domain of the instantiated function type to check the argument of the function. We believe

that our approach can also be used in type systems with polymorphism, and avoid the need for

specialized rules and relations. However, those type systems introduce important complications. In

particular, we need to also employ a form of unification variables to aid with instantiation. Studying

the interaction between contextual typing and polymorphism is an interesting line for future work.

Spines. Application spines [Cervesato and Pfenning 2003] model the arguments of 𝑛-ary applica-

tions of the form ℎ 𝑒1 . . . 𝑒𝑛 . Cervesato and Pfenning propose a syntactic representation of spines,

motivated by gaining efficient access to the head of an application (ℎ). The notions of a surrounding

context and application consumer in our work are closely related to the concept of an application

spine and its head, respectively. However, the structure of a surrounding context is more general

than a spine, and the head of an application is not the same as the application consumer. For an

application 𝑒1 𝑒2 what we are looking for is the application consumer for 𝑒2. In some cases, such as

𝑥 1 2, the concept of an application head coincides with the application consumer. However, consider

the application (𝜆𝑥 . 𝑦) 1 (𝜆𝑧. 𝑧) in Section 4.1. Here 𝑦 is a variable, with the type (𝐼 → 𝐼 ) → 𝐼

in the typing context. In this case 𝑦 would be the application consumer that determines which

application rule to use to type check the (outer) application. But this example illustrates that the

application consumer does not always coincide with the application head, which is 𝜆𝑥 . 𝑦 in this

case. In addition to tracking information about applied arguments, surrounding contexts also track

known type information, which are not tracked in syntactic representations of spines.

The notion of spines has been found to be useful in type inference for languages with implicit

polymorphism [Jenkins and Stump 2018; Leijen 2008; Mercer et al. 2022; Serrano et al. 2020, 2018].

Most of these works [Leijen 2008; Mercer et al. 2022; Serrano et al. 2020, 2018], employ a syntactic

representation of spines (also called argument lists), similar to the representation proposed by

Cervesato and Pfenning, to assist type inference. Spine-local type inference [Jenkins and Stump

2018] also employs the concept of spines, but without requiring a syntactic representation for

spines in the syntax for terms. Instead they use standard lambda calculus syntax, like in our own

work. Their typing relation employs bidirectional typing. Their rule for applications employs some

auxiliary relations that are responsible for finding the head of an application, and collect arguments

of an application spine. In addition, they also track known type information about the output type

of an application, when available. Then their typing relation is able to accept:

pair : ∀𝑋 𝑌 . 𝑋 → 𝑌 → ⟨𝑋 × 𝑌 ⟩ ⊢ pair (𝜆𝑥. 𝑥) 1 ⇐ ⟨(Int → Int) × Int⟩
Here we want to find the implicit instantiations for 𝑋 and 𝑌 and deal with the first argument 𝜆𝑥 . 𝑥 .

Because they find the type of the head (∀𝑋 𝑌 . 𝑋 → 𝑌 → ⟨𝑋 × 𝑌 ⟩) and they track the output type

of the application (⟨(Int → Int) × Int⟩), when they find the argument 𝜆𝑥. 𝑥 they are able to

conclude that 𝑋 = Int → Int, and check the lambda with that type. Unlike our work, spine-local

type inference cannot type-check terms like (𝜆𝑥 𝑦. 𝑥 + 𝑦) 1 2, and it lacks the power afforded by

the AppS rule [Xie and Oliveira 2018]. Although the output types of applications are partly tracked,

spine-local type inference also rejects programs such as ((𝜆𝑥. 𝑥) 1) : Int, which are accepted using

rule App2. So spine-local type inference does not provide the power afforded by App2 either.

Local type inference. Local type inference [Pierce and Turner 2000] combines bidirectional typing

with local argument synthesis, to deal with implicit polymorphism. Instead of spines, local type

inference uses 𝑛-ary uncurried applications, which also gives direct access to the head of an

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 266. Publication date: August 2024.



Contextual Typing 266:27

application. This representation, combined with local argument synthesis, enables the instantiation

of type arguments for applications. Colored local type inference [Odersky et al. 2001] is an extension

of local type inference. Like us, Odersky et al. observe that a drawback of bidirectional typing

is that it cannot exploit partial type information. To address this limitation they propose colored
types, in which types are annotated with two propagation directions: inherited; or synthesized. An
inherited type is a known type, and should be propagated downwards the AST. A synthesized type,

on the other hand, must be propagated upwards the AST, after some information about the type is

discovered. From a bidirectional typing perspective, checked types are types that are fully inherited,

whereas inferred types are types that are fully synthesized. Colored types enable types where some

portions are inherited and others synthesized. Nonetheless, this adds complexity in the syntax of

types, since all types need to be annotated with propagation directions. Consequentely, the typing

rules also become more complicated in order to deal with colored types. Contextual typing deals

with partial type information via the surrounding context, and does not require changes to the

syntax of types. Thus the propagation of partial type information is considerably simpler. However,

we currently do not deal with implicit polymorphism, which is left to future work.

7 Conclusion
Contextual typing is a lightweight form of type inference that exploits partially known contextual

information. It enables several improvements over bidirectional typing. Firstly, fewer annotations

are needed, by having a more powerful treatment for applications, and propagating contextual

information. This is achieved without backtracking, keeping the approach efficient. More powerful

application rules also help with binding constructs and avoid duplicated rules. Secondly, annotata-

bility becomes clearer, and specifications of typing describing where annotations are needed are

made precise via a QTAS. Finally, for type systems with subtyping, contextual subsumption deals

with partially known contextual information, and avoids changes in other rules and specialized

auxiliary relations. For implementations, instead of two mutually recursive inference and checking

functions, we need mutually recursive typing and subtyping/matching functions.

To design a type system with contextual typing, an informal design recipe is to start with the

corresponding TAS. Then there are two main tasks: 1) determining contextual type information

and the structure of the surrounding context; and 2) designing the QTAS and counters. For (1) we

must analyse the elimination forms in the language and determine the information that needs to

be tracked in the context to aid the consumers. For (2), the design of the QTAS and counters is

somewhat interconnected. A simpler case is when there is only a single QTAS typing rule for each

elimination form. In this case, the design of counters is simple: we simply need a different kind

of successor for each entry in the surrounding context. The main complication that can show up

when designing a QTAS and counters is that we may want multiple rules for the same elimination

form. This is what happens with applications, where we wish to have 2 different rules for added

flexibility. In the general case, we need a successor counter for each typing rule dealing with the

elimination form, although for STLC it is possible to have a simpler design with only one successor.

We only cover a small set of features in this work. More study is needed to show the practical

applicability of contextual typing to other features. The interaction between contextual typing and

polymorphism is a particularly interesting direction for future work.
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A Calculus With Simplified Counters
In the QTAS with simple types, the ∞ counter could be avoided: we could use an arbitrary 𝑛

to represent the ∞ counter. We can always pick an arbitrarily large number to contain all the

needed information to type check a term. However, the∞ counter plays an important role when

we introduce subtyping, so we keep∞ in the paper for consistency. Nonetheless, it is interesting to

mention the simplified version here, as it could be used as a simpler foundation for some QTAS

designs.

Expressions 𝑒 ::= 𝑖 | 𝑥 | 𝜆𝑥 . 𝑒 | 𝑒1 𝑒2 | 𝑒 : 𝐴

Counters 𝑛 ::= 0 | 𝑆 𝑛

DLit

Γ ⊢0 𝑖 : 𝐼𝑛𝑡

DVar
𝑥 : 𝐴 ∈ Γ

Γ ⊢0 𝑥 : 𝐴

DAnn
Γ ⊢𝑛 𝑒 : 𝐴

Γ ⊢0 (𝑒 : 𝐴) : 𝐴

DLam
Γ, 𝑥 : 𝐴 ⊢𝑛 𝑒 : 𝐵

Γ ⊢(𝑆 𝑛) 𝜆𝑥 . 𝑒 : 𝐴 → 𝐵

DApp1

Γ ⊢0 𝑒1 : 𝐴 → 𝐵 Γ ⊢𝑛 𝑒2 : 𝐴

Γ ⊢0 𝑒1 𝑒2 : 𝐵

DApp2

Γ ⊢(𝑆 𝑛) 𝑒1 : 𝐴 → 𝐵 Γ ⊢0 𝑒2 : 𝐴

Γ ⊢𝑛 𝑒1 𝑒2 : 𝐵

DSub
Γ ⊢0 𝑒 : 𝐴

Γ ⊢(𝑆 𝑛) 𝑒 : 𝐴

Such simplification will not affect the essential properties. It is also sound and complete to the

algorithmic formulation in Section 4. It also has strong annotatability.

B Soundness and Completeness
B.1 STLC
We briefly discuss the most general form of soundness and completeness and related lemmas. For

more details, please refer to the Agda proof placed in the supplementary materials.

Soundness. To show the soundness, we need to define an auxiliary judgment called splitting,
which extracts all the expressions from context Σ into a sequence. At the same time, the result type𝐴

will be split into a sequence of types and the tail type. The splitting judgment (Σ, 𝐴) ↩→ (𝑒, Σ′, 𝐴,𝐴′)
is shown below, where Σ′

covers two base cases of context: the empty context and the full type

context. We keep track of two invariants in this judgment: Σ = 𝑒 → Σ′
and 𝐴 = 𝐴 → 𝐴′

.

SplitEmpty

(□, 𝐴) ↦→ ([],□, [], 𝐴)

SplitType

(𝐴, 𝐵) ↦→ ([], 𝐴, [], 𝐵)

SplitContext

(Σ, 𝐵) ↦→ (𝑒,𝑇 , 𝐵, 𝐵′)
( 𝑒 { Σ, 𝐴 → 𝐵) ↦→ (𝑒 :: 𝑒,𝑇 ,𝐴 :: 𝐵, 𝐵′)

We can now present our soundness property, which can be formalized as three mutually depen-

dent theorems.

Theorem B.1 (Soundness of Matching). If Γ ⊢ 𝐴 ≈ Σ and (Σ, 𝐴) ↦→ (𝑒, Σ′, 𝐴,𝐴′), then
Γ ⊢∞ 𝑒 : 𝐴.

Intuitively, since we split the context Σ and the type 𝐴 in parallel, each piece of context and type

should be matched, then well-typed in the QTAS.

Theorem B.2 (Soundness of Typing).

• If Γ ⊢ Σ ⇒ 𝑒 ⇒ 𝐴 and (Σ, 𝐴) ↦→ (𝑒,□, 𝐴,𝐴′), then Γ ⊢0 𝑒 𝑒 : 𝐴′.
• If Γ ⊢ Σ ⇒ 𝑒 ⇒ 𝐴 and (Σ, 𝐴) ↦→ (𝑒, 𝐵,𝐴,𝐴′), then Γ ⊢∞ 𝑒 𝑒 : 𝐵.

The key idea of the two theorems is to extract all arguments from the context and apply them

back to 𝑒 . After building an application expression, we then assert that this constructed expression
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is well-typed in the QTAS. The two theorems are proved by direct induction on typing. In the

ALam2 case, the following lemma is needed:

Lemma B.3 (Substitution). If Γ, 𝑥 : 𝐴 ⊢𝑛 𝑒 𝑒 : 𝐵 and Γ ⊢0 𝑒1 : 𝐴, then Γ ⊢𝑛 ((𝜆𝑥. 𝑒) 𝑒1) 𝑒 : 𝐵.

We name it as substitution lemma since it looks similar to the well-known substitution lemma that
is used to prove type soundness. It is interpreted as: in an application 𝑒 𝑒 with the context having

the pair 𝑥 : 𝐴, when we have some 𝑒1 that infers this type, we can replace 𝑒 with an application

term (𝜆𝑥 . 𝑒) 𝑒1. This new application can still be well-typed in a typing environment without that

pair.

This lemma is proved by induction on a measure (length(𝑒), size(𝑛)), We also need to rewrite

the application spine into a snoc form to expose the outer application argument. We believe this

lemma and proof reflects our inference strategy: unlike ordinary systems (i.e. TAS, QTAS) that deal

with the outer arguments first and reach inwards, instead we start from the inner argument and

analyze outwards. In this way, we finish the proof for the soundness lemma, and obtain the two

key corollaries in the paper.

Completeness. Compared with soundness, completeness is easier to prove. We only need an

auxiliary judgment Γ ⊢ (𝑛,𝐴) ∼ Σ that transforms counters into contexts.

Γ ⊢ (0, 𝐴) ∼ □
∼0

Γ ⊢ (∞, 𝐴) ∼ 𝐴
∼∞

Γ ⊢ □⇒ 𝑒 ⇒ 𝐴 Γ ⊢ (𝑛, 𝐵) ∼ Σ

Γ ⊢ (𝑆 𝑛,𝐴 → 𝐵) ∼ 𝑒 { Σ
∼S

Rules ∼0 and ∼∞ deal with two base cases, mapping the counter zero into an empty context, and

an infinity counter into a full type. Rule ∼S deals with successor counters, which represents that

some argument information is available, in an expression 𝑒 followed by a context Σ. Note that 𝑒
can be any expression as long as it is well-typed with type 𝐴 in the empty context. The intuition

is that, from the successor, we know that the information comes from the inference result of one

argument 𝑒 , which is then placed into the context.

The completeness theorems are defined as:

Theorem B.4 (Completeness of Subsumption). If Γ ⊢ (𝑛,𝐴) ∼ Σ, then Γ ⊢ 𝐴 ≈ Σ.

This theorem reflects that context construction judgment implies a subsumption invariant.

Theorem B.5 (Completeness of Typing). If Γ ⊢𝑛 𝑒 : 𝐴 and Γ ⊢ (𝑛,𝐴) ∼ Σ, then Γ ⊢ Σ ⇒ 𝑒 ⇒ 𝐴.

This theorem describes that if we have a 𝑒 well typed with counter 𝑛 in a QTAS, from 𝑛 we can

create a context Σ, which should also be well-typed in the algorithmic system. In this way, we can

obtain the two key corollaries shown in the paper.

B.2 𝐶&

It is also worthwhile discussing the most general lemmas of 𝐶& here. Although the key corollaries

are the same as STLC, their general forms are different.

Soundness. The soundness stays the same as STLC, but note that the splitting judgment also

deals with projection.

Theorem B.6 (Soundness of Typing).

• If Γ ⊢ Σ ⇒ 𝑒 ⇒ 𝐴 and (Σ, 𝐴) ↦→ (𝑒,□, 𝐴,𝐴′), then Γ ⊢0 𝑒 𝑒 : 𝐴′.
• If Γ ⊢ Σ ⇒ 𝑒 ⇒ 𝐴 and (Σ, 𝐴) ↦→ (𝑒, 𝐵,𝐴,𝐴′), then Γ ⊢∞ 𝑒 𝑒 : 𝐵.

Additionally, we have soundness for subtyping.
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Theorem B.7 (Soundness of Subtyping). If Γ ⊢ 𝐴 <: Σ⇝ 𝐵 and (Σ, 𝐴) ↦→ (𝑒, Σ′, 𝐴,𝐴′), then
Γ ⊢∞ 𝑒 : 𝐴 and 𝐴 <:𝑛 𝐴′.

The 𝑛 is determined by the shape of 𝑒 and Σ′
, please refer to the Agda proof for details.

Completeness. We enrich counters with several successors, so the correspondence to the context

Σ, has several changes:

Γ ⊢ (0, 𝐴) ∼ □
∼0

Γ ⊢ (∞, 𝐴) ∼ 𝐴
∼∞

Γ ⊢ (𝑚,𝐴) ∼ Σ

Γ ⊢ (𝑆𝑎 𝑚, {𝑎 : 𝐴}) ∼ 𝑎 { Σ
∼𝑆𝑎

Γ ⊢ 𝐴 ⇒ 𝑒 ⇒ 𝐶 Γ ⊢ (𝑚, 𝐵) ∼ Σ

Γ ⊢ (𝑆𝑐 𝑚,𝐴 → 𝐵) ∼ 𝑒 { Σ
∼𝑆𝑐

Γ ⊢ □⇒ 𝑒 ⇒ 𝐴 Γ ⊢ (𝑛, 𝐵) ∼ Σ

Γ ⊢ (𝑆𝑖 𝑛,𝐴 → 𝐵) ∼ 𝑒 { Σ
∼𝑆𝑖

Theorem B.8 (Completeness of typing). If Γ ⊢𝑛 𝑒 : 𝐴 and Γ ⊢ (𝑛,𝐴) ∼ Σ, then Γ ⊢ Σ ⇒ 𝑒 ⇒ 𝐴.

Theorem B.9 (Completeness of Subtyping). If 𝐵 <:𝑛 𝐴 and Γ ⊢ (𝑛,𝐴) ∼ Σ, then Γ ⊢ 𝐵 <: Σ⇝
𝐴.

C Definitions of Measures in Decidability
C.1 STLC
To prove the decidability of algorithmic formulation in Section 4.3, we define several sizes and

introduce measures. The measure used for typing is size(Σ) + size(𝑒), and the measure for

matching is size(Σ).
The definition of size(Σ) is:

size(□) = 0

size(𝐴) = 0

size( 𝑒 { Σ) = 1 + size(𝑒) + size(Σ)

The definition of size(𝑒) is:

size(𝑖) = 1

size(𝑥) = 1

size(𝜆𝑥 . 𝑒) = 1 + size(𝑒)
size(𝑒1 𝑒2) = 2 + size(𝑒1) + size(𝑒2)
size(𝑒 : 𝐴) = 1 + size(𝑒)

C.2 𝐶&

The measures used in 𝐶& are the same as STLC.

The definition of size(Σ) is:

size(□) = 0

size(𝐴) = 0

size( 𝑒 { Σ) = 1 + size(𝑒) + size(Σ)
size( 𝑎 { Σ) = 1 + size(Σ)
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The definition of size(𝑒) is:

size(𝑐) = 1

size(𝑥) = 1

size(𝜆𝑥 . 𝑒) = 1 + size(𝑒)
size(𝑒1 𝑒2) = 2 + size(𝑒1) + size(𝑒2)
size(𝑒 : 𝐴) = 1 + size(𝑒)

size({𝑎1 = 𝑒1, . . . , 𝑎𝑖 = 𝑒𝑖 }) = 1 + 𝑖 + sum(size(𝑒𝑖 ))
size(𝑒.𝑎) = 1 + size(𝑒)

D Annotatability of 𝐶&

The definition of need function is:

need 𝑐 = 0

need 𝑥 = 0

need (𝜆𝑥. 𝑒) = 𝑆 (need 𝑒)

need (𝑒1 𝑒2) =
{

0, if need 𝑒1 = 0

𝑛, if need 𝑒1 = 𝑆 𝑛

need {𝑎𝑖 = 𝑒𝑖 } = 0

need 𝑒.𝑎 = 0

The elaboration rules are shown in Fig. 13.

E Type Assignment Systems
The type soundness of QTAS in Section 5 is ensured by an erasure to a TAS. The syntax and

small-step operational semantics are given below. The typing of TAS is essentially the same as

QTAS without counters.

E.1 Syntax
The syntax for the TAS is given next.

Types 𝐴, 𝐵,𝐶, 𝐷 ::= Int | Float | Top | 𝐴 → 𝐵 | 𝐴 & 𝐵 | {𝑎 : 𝐴}
Constants 𝑐 ::= 𝑖 | 𝑢 | + | +𝑖 | +𝑢
Expressions 𝑒 ::= 𝑐 | 𝑥 | 𝜆𝑥. 𝑒 | 𝑒1 𝑒2 | {𝑎 = 𝑒} | 𝑒.𝑎
Value 𝑣 := 𝑐 | 𝜆𝑥. 𝑒 | {𝑎 = 𝑣}
Environments Γ ::= . | Γ, 𝑥 : 𝐴

E.2 Operational Semantics
The small-step operational seamntics is presented in Fig. 14.
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Γ ⊢ 𝑒 : 𝐴⇝ 𝑒′ (Under environment Γ, 𝑒 in TAS has the type 𝐴 and elaborates to 𝑒′ in QTAS)

Γ ⊢ 𝑐 : ⟦𝑐⟧⇝ 𝑐
EConst

(𝑥 : 𝐴) ∈ Γ

Γ ⊢ 𝑥 : 𝐴⇝ 𝑥
EVar

Γ, 𝑥 : 𝐴 ⊢ 𝑒 : 𝐵⇝ 𝑒′

Γ ⊢ 𝜆𝑥 . 𝑒 : 𝐴 → 𝐵⇝ 𝜆𝑥. 𝑒′
ELam

need 𝑒1 = 0 ∨ need 𝑒2 = 0 Γ ⊢ 𝑒1 : 𝐴 → 𝐵⇝ 𝑒′
1

Γ ⊢ 𝑒2 : 𝐴⇝ 𝑒′
2

Γ ⊢ 𝑒1 𝑒2 : 𝐵⇝ 𝑒′
1
𝑒′

2

EApp1

need 𝑒1 = 𝑆 𝑛1 ∧ need 𝑒2 = 𝑆 𝑛2 Γ ⊢ 𝑒1 : 𝐴 → 𝐵⇝ 𝑒′
1

Γ ⊢ 𝑒2 : 𝐴⇝ 𝑒′
2

Γ ⊢ 𝑒1 𝑒2 : 𝐵⇝ 𝑒′
1
(𝑒′

2
: 𝐴)

EApp2

Γ ⊢ {} : Top⇝ {}
ERcdNil

need 𝑒 = 0 Γ ⊢ 𝑒 : 𝐴⇝ 𝑒′

Γ ⊢ {𝑎 = 𝑒} : {𝑎 : 𝐴}⇝ {𝑎 = 𝑒′}
ERcdOne1

need 𝑒 = 𝑆 𝑛 Γ ⊢ 𝑒 : 𝐴⇝ 𝑒′

Γ ⊢ {𝑎 = 𝑒} : {𝑎 : 𝐴}⇝ {𝑎 = (𝑒′ : 𝐴)}
ERcdOne2

need 𝑒 = 0 Γ ⊢ 𝑒 : 𝐴⇝ 𝑒′ Γ ⊢ 𝑟 : 𝐴𝑠 ⇝ 𝑟 ′

Γ ⊢ {𝑎 = 𝑒, 𝑟 } : {𝑎 : 𝐴} & 𝐴𝑠 ⇝ {𝑎 = 𝑒′, 𝑟 ′}
ERcdCons1

need 𝑒 = 𝑆 𝑛 Γ ⊢ 𝑒 : 𝐴⇝ 𝑒′ Γ ⊢ 𝑟 : 𝐴𝑠 ⇝ 𝑟 ′

Γ ⊢ {𝑎 = 𝑒, 𝑟 } : {𝑎 : 𝐴} & 𝐴𝑠 ⇝ {𝑎 = (𝑒′ : 𝐴), 𝑟 ′}
ERcdCons2

Γ ⊢ 𝑒 : {𝑎 : 𝐴}⇝ 𝑒′

Γ ⊢ 𝑒.𝑎⇝ 𝑒′ .𝑎
Eprj

Fig. 13. Elaborations rule for QTAS of 𝐶& to TAS.

𝑒 ↩→ 𝑒′ (𝑒 reduces to 𝑒′)

StApp1

𝑒1 ↩→ 𝑒′
1

𝑒1 𝑒2 ↩→ 𝑒′
1
𝑒2

StApp2

𝑒2 ↩→ 𝑒′
2

𝑣 𝑒2 ↩→ 𝑣 𝑒′
2

StPrj1

𝑒 ↩→ 𝑒′

𝑒.𝑎 ↩→ 𝑒′ .𝑎

StPrj2

{. . . , 𝑎𝑖 = 𝑣𝑖 , . . .}.𝑙 ↩→ 𝑣𝑖

StRcd
𝑒𝑖 ↩→ 𝑒′𝑖

{𝑎1 = 𝑣1, . . . , 𝑎 𝑗 = 𝑣 𝑗 , 𝑎𝑖 = 𝑒𝑖 , . . .} ↩→ {𝑎1 = 𝑣1, . . . , 𝑎 𝑗 = 𝑣 𝑗 , 𝑎𝑖 = 𝑒′𝑖 , . . .}

St+i

+ 𝑖 ↩→ +𝑖

St+u

+ 𝑢 ↩→ +𝑢

St+ii

+𝑖1 𝑖2 ↩→ (𝑖1 + 𝑖2)

St+uu

+𝑢1
𝑢2 ↩→ (𝑢1 + 𝑢2)

Fig. 14. Small-step operational semantics for TAS.
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